These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24711402)
1. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Hodgkins SB; Tfaily MM; McCalley CK; Logan TA; Crill PM; Saleska SR; Rich VI; Chanton JP Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5819-24. PubMed ID: 24711402 [TBL] [Abstract][Full Text] [Related]
2. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169 [TBL] [Abstract][Full Text] [Related]
3. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758 [TBL] [Abstract][Full Text] [Related]
4. Changing climatic controls on the greenhouse gas balance of thermokarst bogs during succession after permafrost thaw. Heffernan L; Estop-Aragonés C; Kuhn MA; Holger-Knorr K; Olefeldt D Glob Chang Biol; 2024 Jul; 30(7):e17388. PubMed ID: 38967139 [TBL] [Abstract][Full Text] [Related]
5. Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014. Varner RK; Crill PM; Frolking S; McCalley CK; Burke SA; Chanton JP; Holmes ME; ; Saleska S; Palace MW Philos Trans A Math Phys Eng Sci; 2022 Jan; 380(2215):20210022. PubMed ID: 34865532 [TBL] [Abstract][Full Text] [Related]
6. Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. Hough M; McCabe S; Vining SR; Pickering Pedersen E; Wilson RM; Lawrence R; Chang KY; Bohrer G; ; Riley WJ; Crill PM; Varner RK; Blazewicz SJ; Dorrepaal E; Tfaily MM; Saleska SR; Rich VI Glob Chang Biol; 2022 Feb; 28(3):950-968. PubMed ID: 34727401 [TBL] [Abstract][Full Text] [Related]
8. Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia. Jongejans LL; Liebner S; Knoblauch C; Mangelsdorf K; Ulrich M; Grosse G; Tanski G; Fedorov AN; Konstantinov PY; Windirsch T; Wiedmann J; Strauss J Glob Chang Biol; 2021 Jun; 27(12):2822-2839. PubMed ID: 33774862 [TBL] [Abstract][Full Text] [Related]
9. Constraints on potential enzyme activities in thermokarst bogs: Implications for the carbon balance of peatlands following thaw. Heffernan L; Jassey VEJ; Frederickson M; MacKenzie MD; Olefeldt D Glob Chang Biol; 2021 Oct; 27(19):4711-4726. PubMed ID: 34164885 [TBL] [Abstract][Full Text] [Related]
10. Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. Heslop JK; Walter Anthony KM; Grosse G; Liebner S; Winkel M Sci Total Environ; 2019 Nov; 691():124-134. PubMed ID: 31319250 [TBL] [Abstract][Full Text] [Related]
11. Permafrost thaw causes large carbon loss in boreal peatlands while changes to peat quality are limited. Harris LI; Olefeldt D; Pelletier N; Blodau C; Knorr KH; Talbot J; Heffernan L; Turetsky M Glob Chang Biol; 2023 Oct; 29(19):5720-5735. PubMed ID: 37565359 [TBL] [Abstract][Full Text] [Related]
12. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014 [TBL] [Abstract][Full Text] [Related]
13. Permafrost thaw and climate warming may decrease the CO Raudina TV; Loiko SV; Lim A; Manasypov RM; Shirokova LS; Istigechev GI; Kuzmina DM; Kulizhsky SP; Vorobyev SN; Pokrovsky OS Sci Total Environ; 2018 Sep; 634():1004-1023. PubMed ID: 29660859 [TBL] [Abstract][Full Text] [Related]
14. Dissolved organic matter quality in thermokarst lake water and sediments across a permafrost gradient, Western Siberia. Kurashev DG; Manasypov RM; Raudina TV; Krickov IV; Lim AG; Pokrovsky OS Environ Res; 2024 Jul; 252(Pt 4):119115. PubMed ID: 38729413 [TBL] [Abstract][Full Text] [Related]
15. Methylotrophy in the Mire: direct and indirect routes for methane production in thawing permafrost. Ellenbogen JB; Borton MA; McGivern BB; Cronin DR; Hoyt DW; Freire-Zapata V; McCalley CK; Varner RK; Crill PM; Wehr RA; Chanton JP; Woodcroft BJ; Tfaily MM; Tyson GW; Rich VI; Wrighton KC mSystems; 2024 Jan; 9(1):e0069823. PubMed ID: 38063415 [TBL] [Abstract][Full Text] [Related]
16. Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Shirokova LS; Chupakov AV; Ivanova IS; Moreva OY; Zabelina SA; Shutskiy NA; Loiko SV; Pokrovsky OS Sci Total Environ; 2021 Aug; 782():146737. PubMed ID: 33838368 [TBL] [Abstract][Full Text] [Related]
17. Contribution of Peatland Permafrost to Dissolved Organic Matter along a Thaw Gradient in North Siberia. Gandois L; Hoyt AM; Hatté C; Jeanneau L; Teisserenc R; Liotaud M; Tananaev N Environ Sci Technol; 2019 Dec; 53(24):14165-14174. PubMed ID: 31710219 [TBL] [Abstract][Full Text] [Related]
18. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625 [TBL] [Abstract][Full Text] [Related]
19. Decade of experimental permafrost thaw reduces turnover of young carbon and increases losses of old carbon, without affecting the net carbon balance. Olid C; Klaminder J; Monteux S; Johansson M; Dorrepaal E Glob Chang Biol; 2020 Oct; 26(10):5886-5898. PubMed ID: 32681580 [TBL] [Abstract][Full Text] [Related]