These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24711419)

  • 1. Architecture and assembly of the archaeal Cdc48*20S proteasome.
    Barthelme D; Chen JZ; Grabenstatter J; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):E1687-94. PubMed ID: 24711419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine.
    Barthelme D; Sauer RT
    Science; 2012 Aug; 337(6096):843-6. PubMed ID: 22837385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.
    Barthelme D; Sauer RT
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3327-32. PubMed ID: 23401548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication.
    Barthelme D; Jauregui R; Sauer RT
    Protein Sci; 2015 Sep; 24(9):1521-7. PubMed ID: 26134898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum.
    Pamnani V; Tamura T; Lupas A; Peters J; Cejka Z; Ashraf W; Baumeister W
    FEBS Lett; 1997 Mar; 404(2-3):263-8. PubMed ID: 9119075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D1 ring is stable and nucleotide-independent, whereas D2 ring undergoes major conformational changes during the ATPase cycle of p97-VCP.
    Wang Q; Song C; Yang X; Li CC
    J Biol Chem; 2003 Aug; 278(35):32784-93. PubMed ID: 12807884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.
    Rockel B; Jakana J; Chiu W; Baumeister W
    J Mol Biol; 2002 Apr; 317(5):673-81. PubMed ID: 11955016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome.
    Wilson HL; Ou MS; Aldrich HC; Maupin-Furlow J
    J Bacteriol; 2000 Mar; 182(6):1680-92. PubMed ID: 10692374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex.
    Bodnar NO; Rapoport TA
    Cell; 2017 May; 169(4):722-735.e9. PubMed ID: 28475898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of the AAA+ ATPase p97/Cdc48p.
    Xia D; Tang WK; Ye Y
    Gene; 2016 May; 583(1):64-77. PubMed ID: 26945625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase.
    Gerega A; Rockel B; Peters J; Tamura T; Baumeister W; Zwickl P
    J Biol Chem; 2005 Dec; 280(52):42856-62. PubMed ID: 16236712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexamerization of p97-VCP is promoted by ATP binding to the D1 domain and required for ATPase and biological activities.
    Wang Q; Song C; Li CC
    Biochem Biophys Res Commun; 2003 Jan; 300(2):253-60. PubMed ID: 12504076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine.
    Barthelme D; Sauer RT
    J Mol Biol; 2016 May; 428(9 Pt B):1861-9. PubMed ID: 26608813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding.
    Böhm S; Lamberti G; Fernández-Sáiz V; Stapf C; Buchberger A
    Mol Cell Biol; 2011 Apr; 31(7):1528-39. PubMed ID: 21282470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP.
    Niwa H; Ewens CA; Tsang C; Yeung HO; Zhang X; Freemont PS
    J Biol Chem; 2012 Mar; 287(11):8561-70. PubMed ID: 22270372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The archaeal proteasome is regulated by a network of AAA ATPases.
    Forouzan D; Ammelburg M; Hobel CF; Ströh LJ; Sessler N; Martin J; Lupas AN
    J Biol Chem; 2012 Nov; 287(46):39254-62. PubMed ID: 22992741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway.
    Sá-Moura B; Funakoshi M; Tomko RJ; Dohmen RJ; Wu Z; Peng J; Hochstrasser M
    J Biol Chem; 2013 Nov; 288(47):33682-33696. PubMed ID: 24121501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates.
    Lipson C; Alalouf G; Bajorek M; Rabinovich E; Atir-Lande A; Glickman M; Bar-Nun S
    J Biol Chem; 2008 Mar; 283(11):7166-75. PubMed ID: 18174173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteasomal AAA-ATPases: structure and function.
    Bar-Nun S; Glickman MH
    Biochim Biophys Acta; 2012 Jan; 1823(1):67-82. PubMed ID: 21820014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.
    Smith DM; Kafri G; Cheng Y; Ng D; Walz T; Goldberg AL
    Mol Cell; 2005 Dec; 20(5):687-98. PubMed ID: 16337593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.