BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24711423)

  • 1. Candida albicans SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense.
    Gleason JE; Galaleldeen A; Peterson RL; Taylor AB; Holloway SP; Waninger-Saroni J; Cormack BP; Cabelli DE; Hart PJ; Culotta VC
    Proc Natl Acad Sci U S A; 2014 Apr; 111(16):5866-71. PubMed ID: 24711423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases.
    Peterson RL; Galaleldeen A; Villarreal J; Taylor AB; Cabelli DE; Hart PJ; Culotta VC
    J Biol Chem; 2016 Sep; 291(40):20911-20923. PubMed ID: 27535222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-only superoxide dismutase enzymes and iron starvation stress in
    Schatzman SS; Peterson RL; Teka M; He B; Cabelli DE; Cormack BP; Culotta VC
    J Biol Chem; 2020 Jan; 295(2):570-583. PubMed ID: 31806705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis.
    Robinett NG; Culbertson EM; Peterson RL; Sanchez H; Andes DR; Nett JE; Culotta VC
    J Biol Chem; 2019 Feb; 294(8):2700-2713. PubMed ID: 30593499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene.
    Martchenko M; Alarco AM; Harcus D; Whiteway M
    Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance.
    Frohner IE; Bourgeois C; Yatsyk K; Majer O; Kuchler K
    Mol Microbiol; 2009 Jan; 71(1):240-52. PubMed ID: 19019164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains.
    Robinett NG; Peterson RL; Culotta VC
    J Biol Chem; 2018 Mar; 293(13):4636-4643. PubMed ID: 29259135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface.
    Forest KT; Langford PR; Kroll JS; Getzoff ED
    J Mol Biol; 2000 Feb; 296(1):145-53. PubMed ID: 10656823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase.
    Li CX; Gleason JE; Zhang SX; Bruno VM; Cormack BP; Culotta VC
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):E5336-42. PubMed ID: 26351691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.
    Broxton CN; Culotta VC
    PLoS One; 2016; 11(12):e0168400. PubMed ID: 28033429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans.
    Hwang CS; Rhie G; Kim ST; Kim YR; Huh WK; Baek YU; Kang SO
    Biochim Biophys Acta; 1999 Apr; 1427(2):245-55. PubMed ID: 10216241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.
    Gleason JE; Li CX; Odeh HM; Culotta VC
    J Biol Inorg Chem; 2014 Jun; 19(4-5):595-603. PubMed ID: 24043471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary aspects of superoxide dismutase: the copper/zinc enzyme.
    Bannister WH; Bannister JV; Barra D; Bond J; Bossa F
    Free Radic Res Commun; 1991; 12-13 Pt 1():349-61. PubMed ID: 2071039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans.
    Besold AN; Gilston BA; Radin JN; Ramsoomair C; Culbertson EM; Li CX; Cormack BP; Chazin WJ; Kehl-Fie TE; Culotta VC
    Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29133349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Copper Chaperone CcsA, Coupled with Superoxide Dismutase SodA, Mediates the Oxidative Stress Response in Aspergillus fumigatus.
    Du W; Zhai P; Liu S; Zhang Y; Lu L
    Appl Environ Microbiol; 2021 Aug; 87(17):e0101321. PubMed ID: 34160279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the second domain of the human copper chaperone for superoxide dismutase.
    Lamb AL; Wernimont AK; Pufahl RA; O'Halloran TV; Rosenzweig AC
    Biochemistry; 2000 Feb; 39(7):1589-95. PubMed ID: 10677207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence.
    Hwang CS; Rhie GE; Oh JH; Huh WK; Yim HS; Kang SO
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3705-3713. PubMed ID: 12427960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single mutations at the subunit interface modulate copper reactivity in Photobacterium leiognathi Cu,Zn superoxide dismutase.
    Stroppolo ME; Pesce A; D'Orazio M; O'Neill P; Bordo D; Rosano C; Milani M; Battistoni A; Bolognesi M; Desideri A
    J Mol Biol; 2001 May; 308(3):555-63. PubMed ID: 11327787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceruloplasmin as a source of Cu for a fungal pathogen.
    Besold AN; Shanbhag V; Petris MJ; Culotta VC
    J Inorg Biochem; 2021 Jun; 219():111424. PubMed ID: 33765639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical Analysis of
    Chandler CE; Hernandez FG; Totten M; Robinett NG; Schatzman SS; Zhang SX; Culotta VC
    ACS Infect Dis; 2022 Mar; 8(3):584-595. PubMed ID: 35179882
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.