These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24711493)

  • 1. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone.
    Cloete TJ; Paul G; Ismail EB
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2015):20130210. PubMed ID: 24711493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Strain Rate-Dependent Mechanical Properties for Bovine Cortical Bones.
    Lei J; Li L; Wang Z; Zhu F
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32191273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique.
    Katsamanis F; Raftopoulos DD
    J Biomech; 1990; 23(11):1173-84. PubMed ID: 2277052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic Hopkinson bar: A powerful scientific instrument to study mechanical behavior of materials at high strain rates.
    Guo Y; Du B; Liu H; Ding Z; Zhao Z; Tang Z; Suo T; Li Y
    Rev Sci Instrum; 2020 Aug; 91(8):081501. PubMed ID: 32872966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High strain rate testing of bovine trabecular bone.
    Pilcher A; Wang X; Kaltz Z; Garrison JG; Niebur GL; Mason J; Song B; Cheng M; Chen W
    J Biomech Eng; 2010 Aug; 132(8):081012. PubMed ID: 20670061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone.
    Uniyal P; Sihota P; Kumar N
    J Mech Behav Biomed Mater; 2022 Jan; 125():104910. PubMed ID: 34700105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic fracture and prefracture response of compact bone by split Hopkinson bar methods.
    Lewis JL; Goldsmith W
    J Biomech; 1975 Jan; 8(1):27-40. PubMed ID: 1126971
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of end boundary conditions and specimen geometry on the viscoelastic properties of cancellous bone measured by dynamic mechanical analysis.
    Dong XN; Yeni YN; Les CM; Fyhrie DP
    J Biomed Mater Res A; 2004 Mar; 68(3):573-83. PubMed ID: 14762938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
    Abdel-Wahab AA; Alam K; Silberschmidt VV
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):807-20. PubMed ID: 21565728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus.
    Van Sligtenhorst C; Cronin DS; Wayne Brodland G
    J Biomech; 2006; 39(10):1852-8. PubMed ID: 16055133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic viscoelastic behavior of dental composites measured by Split Hopkinson pressure bar.
    Tanimoto Y; Nishiwaki T; Nemoto K
    Dent Mater J; 2006 Jun; 25(2):234-40. PubMed ID: 16916223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical response of porcine hind leg muscles under dynamic tensile loading.
    Wen Y; Zhang T; Yan W; Chen Y; Wang G
    J Mech Behav Biomed Mater; 2021 Mar; 115():104279. PubMed ID: 33421950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates.
    Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates.
    Johnson TP; Socrate S; Boyce MC
    Acta Biomater; 2010 Oct; 6(10):4073-80. PubMed ID: 20417735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical response of commercially available bone simulants for quasi-static and dynamic loading.
    Brown AD; Walters JB; Zhang YX; Saadatfar M; Escobedo-Diaz JP; Hazell PJ
    J Mech Behav Biomed Mater; 2019 Feb; 90():404-416. PubMed ID: 30445367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.