BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 2471207)

  • 1. Structural and immunochemical properties of fetal bovine serum acetylcholinesterase.
    Doctor BP; Smyth KK; Gentry MK; Ashani Y; Christner CE; de la Hoz DM; Ogert RA; Smith SW
    Prog Clin Biol Res; 1989; 289():305-16. PubMed ID: 2471207
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigations into the development of catalytic activity in anti-acetylcholinesterase idiotypic and anti-idiotypic antibodies.
    Johnson G; Moore SW
    J Mol Recognit; 2009; 22(3):188-96. PubMed ID: 19051205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunochemical characterization of anti-acetylcholinesterase inhibitory monoclonal antibodies.
    Gentry MK; Saxena A; Ashani Y; Doctor BP
    Chem Biol Interact; 1993 Jun; 87(1-3):227-31. PubMed ID: 7688272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase.
    Saxena A; Raveh L; Ashani Y; Doctor BP
    Biochemistry; 1997 Jun; 36(24):7481-9. PubMed ID: 9200697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric control of acetylcholinesterase activity by monoclonal antibodies.
    Saxena A; Hur R; Doctor BP
    Biochemistry; 1998 Jan; 37(1):145-54. PubMed ID: 9425034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.
    Saxena A; Hur RS; Luo C; Doctor BP
    Biochemistry; 2003 Dec; 42(51):15292-9. PubMed ID: 14690439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease.
    Paley EL; Smelyanski L; Malinovskii V; Subbarayan PR; Berdichevsky Y; Posternak N; Gershoni JM; Sokolova O; Denisova G
    Mol Immunol; 2007 Jan; 44(4):541-57. PubMed ID: 16616781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of monoclonal antibodies that inhibit the catalytic activity of acetylcholinesterases.
    Gentry MK; Moorad DR; Hur RS; Saxena A; Ashani Y; Doctor BP
    J Neurochem; 1995 Feb; 64(2):842-9. PubMed ID: 7830078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the topography of the catalytic site of acetylcholinesterase using polyclonal and monoclonal antibodies.
    Ogert RA; Gentry MK; Richardson EC; Deal CD; Abramson SN; Alving CR; Taylor P; Doctor BP
    J Neurochem; 1990 Sep; 55(3):756-63. PubMed ID: 1696619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-epitope antibody, a novel site-directed antibody against human acetylcholinesterase.
    Zhang XM; Liu G; Sun MJ
    Acta Pharmacol Sin; 2004 Apr; 25(4):431-5. PubMed ID: 15066208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitopes recognized by anti-reduced and alkylated acetylcholinesterase antibodies.
    Wang YX; Xin YB; Sun MJ
    Zhongguo Yao Li Xue Bao; 1994 May; 15(3):196-6. PubMed ID: 7526599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and characterization of separate monoclonal antibodies to human acetylcholinesterase and butyrylcholinesterase.
    Brimijoin S; Mintz KP; Alley MC
    Mol Pharmacol; 1983 Nov; 24(3):513-20. PubMed ID: 6195517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholinesterase of human erythrocytes and neuromuscular junctions: homologies revealed by monoclonal antibodies.
    Fambrough DM; Engel AG; Rosenberry TL
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1078-82. PubMed ID: 6175961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of the structural and functional properties of fibronectin--a high molecular weight plasma glycoproteins--by using monoclonal antibodies].
    Chernousov MA; Metsis ML; Glukhova MA; Antonov AS; Orekhov AN
    Mol Biol (Mosk); 1984; 18(3):643-52. PubMed ID: 6206390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibody 3F3 against conformational epitope of Torpedo acetylcholinesterase.
    Fu FH; Wang YX; Li FZ; Xin YB; Sun MJ
    Zhongguo Yao Li Xue Bao; 1997 May; 18(3):284-6. PubMed ID: 10072953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specificity of a panel of prion protein antibodies for the immunohistochemical study of animal and human prion diseases.
    Furuoka H; Yabuzoe A; Horiuchi M; Tagawa Y; Yokoyama T; Yamakawa Y; Shinagawa M; Sata T
    J Comp Pathol; 2007 Jan; 136(1):9-17. PubMed ID: 17270205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in conformational stability between native and phosphorylated acetylcholinesterase as evidenced by a monoclonal antibody.
    Ashani Y; Gentry MK; Doctor BP
    Biochemistry; 1990 Mar; 29(10):2456-63. PubMed ID: 1692236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of subunit-specific antibody probes for Torpedo acetylcholinesterase: cross-species reactivity and use in cell-free translations.
    Lappin RI; Rubin LL; Lieberburg IM
    J Neurobiol; 1987 Jan; 18(1):75-99. PubMed ID: 3553428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a monoclonal antibody, D73H, that maps to a highly conserved region on fibrinogen Bbeta chain.
    Rybarczyk BJ; Pereira M; Simpson-Haidaris PJ
    Thromb Haemost; 2000 Jul; 84(1):43-8. PubMed ID: 10928468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of SLE-specific Sm B cell epitopes using murine monoclonal antibodies.
    Pruijn GJ; Schoute F; Thijssen JP; Smeenk RJ; van Venrooij WJ
    J Autoimmun; 1997 Apr; 10(2):127-36. PubMed ID: 9185874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.