These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 24712640)
1. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors. Inoue T; Nakayama Y; Li Y; Matsumori H; Takahashi H; Kojima H; Wanibuchi H; Katoh M; Oshimura M FEBS J; 2014 Jun; 281(11):2623-37. PubMed ID: 24712640 [TBL] [Abstract][Full Text] [Related]
2. Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Suematsu T; Li Y; Kojima H; Nakajima K; Oshimura M; Inoue T Biochem Biophys Res Commun; 2014 Oct; 453(3):588-94. PubMed ID: 25285631 [TBL] [Abstract][Full Text] [Related]
3. SIRT2 downregulation confers resistance to microtubule inhibitors by prolonging chronic mitotic arrest. Inoue T; Nakayama Y; Yamada H; Li YC; Yamaguchi S; Osaki M; Kurimasa A; Hiratsuka M; Katoh M; Oshimura M Cell Cycle; 2009 Apr; 8(8):1279-91. PubMed ID: 19282667 [TBL] [Abstract][Full Text] [Related]
4. Stabilization of P/CAF, as a ubiquitin ligase toward MDM2, suppresses mitotic cell death through p53-p21 activation in HCT116 cells with SIRT2 suppression. Li Y; Kokura K; Inoue T Biochem Biophys Res Commun; 2019 Jan; 508(1):230-236. PubMed ID: 30482390 [TBL] [Abstract][Full Text] [Related]
5. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Inoue T; Hiratsuka M; Osaki M; Yamada H; Kishimoto I; Yamaguchi S; Nakano S; Katoh M; Ito H; Oshimura M Oncogene; 2007 Feb; 26(7):945-57. PubMed ID: 16909107 [TBL] [Abstract][Full Text] [Related]
6. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons. Nakayama Y; Inoue T Molecules; 2016 May; 21(5):. PubMed ID: 27213315 [TBL] [Abstract][Full Text] [Related]
7. Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase. Nagai T; Ikeda M; Chiba S; Kanno S; Mizuno K J Cell Sci; 2013 Oct; 126(Pt 19):4369-80. PubMed ID: 23886946 [TBL] [Abstract][Full Text] [Related]
8. NQO1 regulates mitotic progression and response to mitotic stress through modulating SIRT2 activity. Kang HJ; Song HY; Ahmed MA; Guo Y; Zhang M; Chen C; Cristofanilli M; Horiuchi D; Vassilopoulos A Free Radic Biol Med; 2018 Oct; 126():358-371. PubMed ID: 30114477 [TBL] [Abstract][Full Text] [Related]
9. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Li Y; Matsumori H; Nakayama Y; Osaki M; Kojima H; Kurimasa A; Ito H; Mori S; Katoh M; Oshimura M; Inoue T Genes Cells; 2011 Jan; 16(1):34-45. PubMed ID: 21059157 [TBL] [Abstract][Full Text] [Related]
10. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Vogel C; Kienitz A; Hofmann I; Müller R; Bastians H Oncogene; 2004 Sep; 23(41):6845-53. PubMed ID: 15286707 [TBL] [Abstract][Full Text] [Related]
11. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold. Galán-Malo P; Vela L; Gonzalo O; Calvo-Sanjuán R; Gracia-Fleta L; Naval J; Marzo I Toxicol Appl Pharmacol; 2012 Feb; 258(3):384-93. PubMed ID: 22178383 [TBL] [Abstract][Full Text] [Related]
12. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Chung KS; Choi HE; Shin JS; Cho YW; Choi JH; Cho WJ; Lee KT Carcinogenesis; 2013 Aug; 34(8):1852-60. PubMed ID: 23615402 [TBL] [Abstract][Full Text] [Related]
13. BubR1 is required for a sustained mitotic spindle checkpoint arrest in human cancer cells treated with tubulin-targeting pyrrolo-1,5-benzoxazepines. Greene LM; Campiani G; Lawler M; Williams DC; Zisterer DM Mol Pharmacol; 2008 Feb; 73(2):419-30. PubMed ID: 17991869 [TBL] [Abstract][Full Text] [Related]
14. Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Singh S; Kumar PU; Thakur S; Kiran S; Sen B; Sharma S; Rao VV; Poongothai AR; Ramakrishna G Tumour Biol; 2015 Aug; 36(8):6159-71. PubMed ID: 25794641 [TBL] [Abstract][Full Text] [Related]
15. Autophagy Governs Protumorigenic Effects of Mitotic Slippage-induced Senescence. Jakhar R; Luijten MNH; Wong AXF; Cheng B; Guo K; Neo SP; Au B; Kulkarni M; Lim KJ; Maimaiti J; Chong HC; Lim EH; Tan TBK; Ong KW; Sim Y; Wong JSL; Khoo JBK; Ho JTS; Chua BT; Sinha I; Wang X; Connolly JE; Gunaratne J; Crasta KC Mol Cancer Res; 2018 Nov; 16(11):1625-1640. PubMed ID: 30037855 [TBL] [Abstract][Full Text] [Related]
16. Requirement of a functional spindle checkpoint for arsenite-induced apoptosis. Wu YC; Yen WY; Yih LH J Cell Biochem; 2008 Oct; 105(3):678-87. PubMed ID: 18668508 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Vogel C; Hager C; Bastians H Cancer Res; 2007 Jan; 67(1):339-45. PubMed ID: 17210716 [TBL] [Abstract][Full Text] [Related]
18. Combretastatin CA-4 and combretastatin derivative induce mitotic catastrophe dependent on spindle checkpoint and caspase-3 activation in non-small cell lung cancer cells. Vitale I; Antoccia A; Cenciarelli C; Crateri P; Meschini S; Arancia G; Pisano C; Tanzarella C Apoptosis; 2007 Jan; 12(1):155-66. PubMed ID: 17143747 [TBL] [Abstract][Full Text] [Related]
19. Regulation of SIRT2 levels for human non-small cell lung cancer therapy. Li Z; Xie QR; Chen Z; Lu S; Xia W Lung Cancer; 2013 Oct; 82(1):9-15. PubMed ID: 23915912 [TBL] [Abstract][Full Text] [Related]
20. SIRT1 regulates mitotic catastrophe via autophagy and BubR1 signaling. Zhao W; Wang Q; Li L; Xie C; Wu Y; Gautam M; Li L Mol Cell Biochem; 2022 Dec; 477(12):2787-2799. PubMed ID: 35639235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]