These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 24712722)
1. Phosphoproteomic analysis provides novel insights into stress responses in Phaeodactylum tricornutum, a model diatom. Chen Z; Yang MK; Li CY; Wang Y; Zhang J; Wang DB; Zhang XE; Ge F J Proteome Res; 2014 May; 13(5):2511-23. PubMed ID: 24712722 [TBL] [Abstract][Full Text] [Related]
2. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002. Yang MK; Qiao ZX; Zhang WY; Xiong Q; Zhang J; Li T; Ge F; Zhao JD J Proteome Res; 2013 Apr; 12(4):1909-23. PubMed ID: 23461524 [TBL] [Abstract][Full Text] [Related]
3. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762 [TBL] [Abstract][Full Text] [Related]
4. Phosphoproteome analysis of the pathogenic bacterium Helicobacter pylori reveals over-representation of tyrosine phosphorylation and multiply phosphorylated proteins. Ge R; Sun X; Xiao C; Yin X; Shan W; Chen Z; He QY Proteomics; 2011 Apr; 11(8):1449-61. PubMed ID: 21360674 [TBL] [Abstract][Full Text] [Related]
5. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Macek B; Mijakovic I; Olsen JV; Gnad F; Kumar C; Jensen PR; Mann M Mol Cell Proteomics; 2007 Apr; 6(4):697-707. PubMed ID: 17218307 [TBL] [Abstract][Full Text] [Related]
6. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides. Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium Listeria monocytogenes reveals phosphorylated proteins related to virulence. Misra SK; Milohanic E; Aké F; Mijakovic I; Deutscher J; Monnet V; Henry C Proteomics; 2011 Nov; 11(21):4155-65. PubMed ID: 21956863 [TBL] [Abstract][Full Text] [Related]
8. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling. Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076 [TBL] [Abstract][Full Text] [Related]
9. Phosphoproteomic analysis of protein phosphorylation networks in Tetrahymena thermophila, a model single-celled organism. Tian M; Chen X; Xiong Q; Xiong J; Xiao C; Ge F; Yang F; Miao W Mol Cell Proteomics; 2014 Feb; 13(2):503-19. PubMed ID: 24200585 [TBL] [Abstract][Full Text] [Related]
10. Identification and quantitation of signal molecule-dependent protein phosphorylation. Groen A; Thomas L; Lilley K; Marondedze C Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576 [TBL] [Abstract][Full Text] [Related]
11. Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species. Ravichandran A; Sugiyama N; Tomita M; Swarup S; Ishihama Y Proteomics; 2009 May; 9(10):2764-75. PubMed ID: 19405024 [TBL] [Abstract][Full Text] [Related]
12. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Zeng Y; Pan Z; Wang L; Ding Y; Xu Q; Xiao S; Deng X Physiol Plant; 2014 Feb; 150(2):252-70. PubMed ID: 23786612 [TBL] [Abstract][Full Text] [Related]
13. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs. Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190 [TBL] [Abstract][Full Text] [Related]
14. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum. Bai X; Ji Z Appl Microbiol Biotechnol; 2012 Jul; 95(1):201-11. PubMed ID: 22627760 [TBL] [Abstract][Full Text] [Related]
15. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses. Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452 [TBL] [Abstract][Full Text] [Related]
16. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785 [TBL] [Abstract][Full Text] [Related]
17. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase. Liu T; Tian CF; Chen WX PLoS One; 2015; 10(9):e0139143. PubMed ID: 26401955 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Proteome of the Marine Diatom Phaeodactylum tricornutum Exposed to Aluminum Providing Insights into Aluminum Toxicity Mechanisms. Xie J; Bai X; Lavoie M; Lu H; Fan X; Pan X; Fu Z; Qian H Environ Sci Technol; 2015 Sep; 49(18):11182-90. PubMed ID: 26308585 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]