These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24712770)

  • 1. Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons.
    Cai Y; Zhang G; Zhang YW
    J Am Chem Soc; 2014 Apr; 136(17):6269-75. PubMed ID: 24712770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study.
    Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G
    Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carrier mobility of MoS2 nanoribbons with edge chemical modification.
    Xiao J; Long M; Li M; Li X; Xu H; Chan K
    Phys Chem Chem Phys; 2015 Mar; 17(10):6865-73. PubMed ID: 25672652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical predictions of size-dependent carrier mobility and polarity in graphene.
    Long MQ; Tang L; Wang D; Wang L; Shuai Z
    J Am Chem Soc; 2009 Dec; 131(49):17728-9. PubMed ID: 19924857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving MoS
    Yang C; Wang B; Xie Y; Zheng Y; Jin C
    Nanotechnology; 2019 Jun; 30(25):255602. PubMed ID: 30802894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons.
    Zhang X; Zhao X; Wu D; Jing Y; Zhou Z
    Nanoscale; 2015 Oct; 7(38):16020-5. PubMed ID: 26370829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation.
    Sagynbaeva M; Panigrahi P; Yunguo L; Ramzan M; Ahuja R
    Nanotechnology; 2014 Apr; 25(16):165703. PubMed ID: 24675167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons.
    Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS
    J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral Interfaces between Monolayer MoS
    Haastrup MJ; Mammen MHR; Rodríguez-Fernández J; Lauritsen JV
    ACS Nano; 2021 Apr; 15(4):6699-6708. PubMed ID: 33750101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant magnetoresistance in zigzag MoS2 nanoribbons.
    Peng L; Yao K; Wu R; Wang S; Zhu S; Ni Y; Zu F; Liu Z; Guo B
    Phys Chem Chem Phys; 2015 Apr; 17(15):10074-9. PubMed ID: 25785819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions.
    Long M; Tang L; Wang D; Li Y; Shuai Z
    ACS Nano; 2011 Apr; 5(4):2593-600. PubMed ID: 21443198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.
    Hung YH; Lu AY; Chang YH; Huang JK; Chang JK; Li LJ; Su CY
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20993-1001. PubMed ID: 27462874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure, carrier mobility and strain modulation of CH (SiH, GeH) nanoribbons.
    Zeng B; Dong Y; Yi Y; Li D; Zhang S; Long M
    J Phys Condens Matter; 2019 Apr; 31(16):165502. PubMed ID: 30681978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental insights into the electronic structure of zigzag MoS2 nanoribbons.
    Yu S; Zheng W
    Phys Chem Chem Phys; 2016 Feb; 18(6):4675-83. PubMed ID: 26799649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoS2 nanoribbons: high stability and unusual electronic and magnetic properties.
    Li Y; Zhou Z; Zhang S; Chen Z
    J Am Chem Soc; 2008 Dec; 130(49):16739-44. PubMed ID: 19554733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 3d transition-metal doping on electronic and magnetic properties of MoS₂ nanoribbons.
    Tian X; Liu L; Du Y; Gu J; Xu JB; Yakobson BI
    Phys Chem Chem Phys; 2015 Jan; 17(3):1831-6. PubMed ID: 25474629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.