These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24712827)

  • 1. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system.
    Gu K; Gao B; Chang Y; Zeng Y
    Artif Organs; 2014 Nov; 38(11):914-23. PubMed ID: 24712827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery: a primary CFD study.
    Zhang Q; Gao B; Gu K; Chang Y; Xu J
    ASAIO J; 2014; 60(6):643-51. PubMed ID: 25373559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system.
    Gao B; Chang Y; Xuan Y; Zeng Y; Liu Y
    Artif Organs; 2013 Feb; 37(2):157-65. PubMed ID: 23379287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsatile Support Mode of BJUT-II Ventricular Assist Device (VAD) has Better Hemodynamic Effects on the Aorta than Constant Speed Mode: A Primary Numerical Study.
    Gu K; Gao B; Chang Y; Zeng Y
    Med Sci Monit; 2016 Jul; 22():2284-94. PubMed ID: 27363758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of captopril on the performance of the control strategies of BJUT-II VAD.
    Gu K; Gao B; Chang Y; Zeng Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):123. PubMed ID: 28155689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical effects of the novel series LVAD on the aortic valve.
    Gao B; Kang Y; Zhang Q; Chang Y
    Comput Methods Programs Biomed; 2020 Dec; 197():105763. PubMed ID: 32998103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2017 Feb; 23():1043-1054. PubMed ID: 28239142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2016 Jul; 22():2576-88. PubMed ID: 27440399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study.
    De Lazzari C; Genuini I; Quatember B; Fedele F
    Comput Methods Programs Biomed; 2014 Feb; 113(2):642-54. PubMed ID: 24332823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of the effect of the control model of intraaorta pump on ventricular unloading and vessel response.
    Gu K; Chang Y; Gao B; Liu Y
    ASAIO J; 2012; 58(5):455-61. PubMed ID: 22890166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamic simulation study of a novel intra-aorta left ventricular assist device.
    Xuan Y; Chang Y; Gu K; Gao B
    ASAIO J; 2012; 58(5):462-9. PubMed ID: 22929899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support.
    Korakianitis T; Shi Y
    ASAIO J; 2007; 53(5):537-48. PubMed ID: 17885325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model.
    Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass.
    Yokoyama Y; Kawaguchi O; Kitao T; Kimura T; Steinseifer U; Takatani S
    Artif Organs; 2010 Sep; 34(9):766-77. PubMed ID: 20883395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer model of the pediatric circulatory system for testing pediatric assist devices.
    Giridharan GA; Koenig SC; Mitchell M; Gartner M; Pantalos GM
    ASAIO J; 2007; 53(1):74-81. PubMed ID: 17237652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.