These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24712829)

  • 21. Solvent dependent photosensitized singlet oxygen production from an Ir(III) complex: pointing to problems in studies of singlet-oxygen-mediated cell death.
    Takizawa SY; Breitenbach T; Westberg M; Holmegaard L; Gollmer A; Jensen RL; Murata S; Ogilby PR
    Photochem Photobiol Sci; 2015 Oct; 14(10):1831-43. PubMed ID: 26255622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA nanotechnology based on i-motif structures.
    Dong Y; Yang Z; Liu D
    Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems.
    Cló E; Snyder JW; Ogilby PR; Gothelf KV
    Chembiochem; 2007 Mar; 8(5):475-81. PubMed ID: 17323398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved EPR study of singlet oxygen in the gas phase.
    Ruzzi M; Sartori E; Moscatelli A; Khudyakov IV; Turro NJ
    J Phys Chem A; 2013 Jun; 117(25):5232-40. PubMed ID: 23768193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyoxometalate sensitization in mechanistic studies of photochemical reactions: the decatungstate anion as a reference sensitizer for photoinduced free radical oxygenations of organic compounds.
    Tanielian C; Schweitzer C; Seghrouchni R; Esch M; Mechin R
    Photochem Photobiol Sci; 2003 Mar; 2(3):297-305. PubMed ID: 12713231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insight into singlet oxygen generation at surface modified nanocrystalline TiO2--the effect of near-infrared irradiation.
    Buchalska M; Labuz P; Bujak Ł; Szewczyk G; Sarna T; Maćkowski S; Macyk W
    Dalton Trans; 2013 Jul; 42(26):9468-75. PubMed ID: 23665700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exerting better control and specificity with singlet oxygen experiments in live mammalian cells.
    Westberg M; Bregnhøj M; Banerjee C; Blázquez-Castro A; Breitenbach T; Ogilby PR
    Methods; 2016 Oct; 109():81-91. PubMed ID: 27389303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns.
    Yang Y; Endo M; Hidaka K; Sugiyama H
    J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. "Switched-on" flexible chalcogenopyrylium photosensitizers. Changes in photophysical properties upon binding to DNA.
    Ohulchanskyy TY; Gannon MK; Ye M; Skripchenko A; Wagner SJ; Prasad PN; Detty MR
    J Phys Chem B; 2007 Aug; 111(32):9686-92. PubMed ID: 17645329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical Organization of Organic Dyes and Protein Cages into Photoactive Crystals.
    Mikkilä J; Anaya-Plaza E; Liljeström V; Caston JR; Torres T; Escosura Ade L; Kostiainen MA
    ACS Nano; 2016 Jan; 10(1):1565-71. PubMed ID: 26691783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Luminescence spectroscopy of singlet oxygen enables monitoring of oxygen consumption in biological systems consisting of fatty acids.
    Gollmer A; Regensburger J; Maisch T; Bäumler W
    Phys Chem Chem Phys; 2013 Jul; 15(27):11386-93. PubMed ID: 23740225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scope and limitations of the TEMPO/EPR method for singlet oxygen detection: the misleading role of electron transfer.
    Nardi G; Manet I; Monti S; Miranda MA; Lhiaubet-Vallet V
    Free Radic Biol Med; 2014 Dec; 77():64-70. PubMed ID: 25236741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of dye localization and self-interactions on the photosensitized generation of singlet oxygen by rose bengal bound to bovine serum albumin.
    Turbay MB; Rey V; Argañaraz NM; Morán Vieyra FE; Aspée A; Lissi EA; Borsarelli CD
    J Photochem Photobiol B; 2014 Dec; 141():275-82. PubMed ID: 25463678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A singlet oxygen photosensitizer enables photoluminescent monitoring of singlet oxygen doses.
    You Y; Cho EJ; Kwon H; Hwang J; Lee SE
    Chem Commun (Camb); 2016 Jan; 52(4):780-3. PubMed ID: 26568516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatially resolved cellular responses to singlet oxygen.
    Redmond RW; Kochevar IE
    Photochem Photobiol; 2006; 82(5):1178-86. PubMed ID: 16740059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Singlet-oxygen-mediated cell death using spatially-localized two-photon excitation of an extracellular sensitizer.
    Pimenta FM; Jensen RL; Holmegaard L; Esipova TV; Westberg M; Breitenbach T; Ogilby PR
    J Phys Chem B; 2012 Aug; 116(34):10234-46. PubMed ID: 22857396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex DNA nanostructures from oligonucleotide ensembles.
    Mathur D; Henderson ER
    ACS Synth Biol; 2013 Apr; 2(4):180-5. PubMed ID: 23656476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.