BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24713022)

  • 1. Superhydrophilic polyelectrolyte brush layers with imparted anti-icing properties: effect of counter ions.
    Chernyy S; Järn M; Shimizu K; Swerin A; Pedersen SU; Daasbjerg K; Makkonen L; Claesson P; Iruthayaraj J
    ACS Appl Mater Interfaces; 2014 May; 6(9):6487-96. PubMed ID: 24713022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophilic Anti-Icing Coatings Based on Polyzwitterion Brushes.
    Liang B; Zhang G; Zhong Z; Huang Y; Su Z
    Langmuir; 2019 Feb; 35(5):1294-1301. PubMed ID: 29873498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling.
    Yang WJ; Neoh KG; Kang ET; Lee SS; Teo SL; Rittschof D
    Biofouling; 2012; 28(9):895-912. PubMed ID: 22963034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swelling enhancement of polyelectrolyte brushes induced by external ions.
    Chu X; Yang J; Liu G; Zhao J
    Soft Matter; 2014 Aug; 10(30):5568-78. PubMed ID: 24960144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M; Terayama Y; Yamaguchi H; Terada M; Murakami D; Ishihara K; Takahara A
    Langmuir; 2012 May; 28(18):7212-22. PubMed ID: 22500465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective adsorption of functionalized nanoparticles to patterned polymer brush surfaces and its probing with an optical trap.
    Steinbach A; Paust T; Pluntke M; Marti O; Volkmer D
    Chemphyschem; 2013 Oct; 14(15):3523-31. PubMed ID: 24105927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical and spectroscopic investigation of counterions exchange in polyelectrolyte brushes.
    Combellas C; Kanoufi F; Sanjuan S; Slim C; Tran Y
    Langmuir; 2009 May; 25(9):5360-70. PubMed ID: 19358586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tribological properties of hydrophilic polymer brushes under wet conditions.
    Kobayashi M; Takahara A
    Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neutron reflectivity study of surfactant self-assembly in weak polyelectrolyte brushes at the sapphire-water interface.
    Moglianetti M; Webster JR; Edmondson S; Armes SP; Titmuss S
    Langmuir; 2011 Apr; 27(8):4489-96. PubMed ID: 21413747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Synthesis of Poly(potassium 3-sulfopropyl methacrylate) Cylindrical Polymer Brushes via ATRP Using a Supramolecular Complex With Crown Ether.
    Xu Y; Walther A; Müller AH
    Macromol Rapid Commun; 2010 Aug; 31(16):1462-6. PubMed ID: 21567552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces.
    Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Klok HA
    Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Anionic or Cationic Surfactants in Polyanionic Brushes and Its Effect on Brush Swelling and Fouling Resistance during Emulsion Filtration.
    Yang Z; Tarabara VV; Bruening ML
    Langmuir; 2015 Nov; 31(43):11790-9. PubMed ID: 26442835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and collapse of a surface-grown strong polyelectrolyte brush on sapphire.
    Dunlop IE; Thomas RK; Titmus S; Osborne V; Edmondson S; Huck WT; Klein J
    Langmuir; 2012 Feb; 28(6):3187-93. PubMed ID: 22292571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.
    Kobayashi M; Terada M; Takahara A
    Faraday Discuss; 2012; 156():403-12; discussion 413-34. PubMed ID: 23285641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion and friction properties of polymer brushes: fluoro versus nonfluoro polymer brushes at varying thickness.
    Bhairamadgi NS; Pujari SP; Leermakers FA; van Rijn CJ; Zuilhof H
    Langmuir; 2014 Mar; 30(8):2068-76. PubMed ID: 24555721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush.
    Kobayashi M; Tanaka H; Minn M; Sugimura J; Takahara A
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20365-71. PubMed ID: 25340883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte brush pH-response at the silica-aqueous solution interface: a kinetic and equilibrium investigation.
    Cheesman BT; Smith EG; Murdoch TJ; Guibert C; Webber GB; Edmondson S; Wanless EJ
    Phys Chem Chem Phys; 2013 Sep; 15(34):14502-10. PubMed ID: 23897091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.