These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24713026)

  • 1. Enantioselective synthesis of α-silylamines by Meerwein-Ponndorf-Verley-type reduction of α-silylimines by a chiral lithium amide.
    Kondo Y; Sasaki M; Kawahata M; Yamaguchi K; Takeda K
    J Org Chem; 2014 Apr; 79(8):3601-9. PubMed ID: 24713026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective synthesis of allenylenol silyl ethers via chiral lithium amide mediated reduction of ynenoyl silanes and their Diels-Alder reactions.
    Sasaki M; Kondo Y; Moto-ishi T; Kawahata M; Yamaguchi K; Takeda K
    Org Lett; 2015 Mar; 17(5):1280-3. PubMed ID: 25689472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental and theoretical study of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amides.
    Xiao Y; Jung D; Gund T; Malhotra SV
    J Mol Model; 2006 Jul; 12(5):681-6. PubMed ID: 16705421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of the stable silylene Si[(NCH2But)2C6H4-1,2] with lithium amides.
    Gehrhus B; Hitchcock PB; Parruci M
    Dalton Trans; 2005 Aug; (16):2720-5. PubMed ID: 16075111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silyllithium-Initiated Coupling of α-Ketoamides with tert-Butanesulfinylimines for Stereoselective Synthesis of Enantioenriched α-(Silyloxy)-β-amino Amides.
    Sun Z; Liu H; Zeng YM; Lu CD; Xu YJ
    Org Lett; 2016 Feb; 18(3):620-3. PubMed ID: 26809848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient synthesis of α-tertiary α-silylamines from aryl sulfonylimidates via one-pot, sequential C-Si/C-C bond formations.
    Han XJ; Yao M; Lu CD
    Org Lett; 2012 Jun; 14(11):2906-9. PubMed ID: 22621235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective conjugate addition of a lithium ester enolate catalyzed by chiral lithium amides: a possible intermediate characterized.
    Lecachey B; Duguet N; Oulyadi H; Fressigné C; Harrison-Marchand A; Yamamoto Y; Tomioka K; Maddaluno J
    Org Lett; 2009 May; 11(9):1907-10. PubMed ID: 19358566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective conjugate addition of a lithium ester enolate catalyzed by chiral lithium amides.
    Duguet N; Harrison-Marchand A; Maddaluno J; Tomioka K
    Org Lett; 2006 Dec; 8(25):5745-8. PubMed ID: 17134262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of an asymmetric addition with a 2:1 mixed lithium amide/n-butyllithium aggregate.
    Liu J; Li D; Sun C; Williard PG
    J Org Chem; 2008 Jun; 73(11):4045-52. PubMed ID: 18459811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral gamma-amino amide synthesis by heterobimetallic lanthanum/lithium/Pybox-catalyzed direct asymmetric mannich-type reactions of alpha-keto anilides.
    Lu G; Morimoto H; Matsunaga S; Shibasaki M
    Angew Chem Int Ed Engl; 2008; 47(36):6847-50. PubMed ID: 18651689
    [No Abstract]   [Full Text] [Related]  

  • 11. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.
    Lu P; Jackson JJ; Eickhoff JA; Zakarian A
    J Am Chem Soc; 2015 Jan; 137(2):656-9. PubMed ID: 25562717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric construction of quaternary carbon centers by sequential conjugate addition of lithium amide and in situ alkylation: utility in the synthesis of (-)-aspidospermidine.
    Suzuki M; Kawamoto Y; Sakai T; Yamamoto Y; Tomioka K
    Org Lett; 2009 Feb; 11(3):653-5. PubMed ID: 19115978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Studies on Rhodium-Catalyzed Enantioselective Silylation of Aryl C-H Bonds.
    Lee T; Hartwig JF
    J Am Chem Soc; 2017 Apr; 139(13):4879-4886. PubMed ID: 28278372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Enantioselective and Regioselective Alkylation of β,γ-Unsaturated Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries.
    Yu K; Miao B; Wang W; Zakarian A
    Org Lett; 2019 Mar; 21(6):1930-1934. PubMed ID: 30835486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly diastereoselective catalytic Meerwein-Ponndorf-Verley reductions.
    Yin J; Huffman MA; Conrad KM; Armstrong JD
    J Org Chem; 2006 Jan; 71(2):840-3. PubMed ID: 16409008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric acid-catalyzed Meerwein-Ponndorf-Verley-Aldol reactions of enolizable aldehydes.
    Seifert A; Scheffler U; Markert M; Mahrwald R
    Org Lett; 2010 Apr; 12(8):1660-3. PubMed ID: 20302361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantioselective synthesis of cyclopropylcarboxamides using s-BuLi-sparteine-mediated metallation.
    Lauru S; Simpkins NS; Gethin D; Wilson C
    Chem Commun (Camb); 2008 Nov; (42):5390-2. PubMed ID: 18985220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts.
    Boronat M; Corma A; Renz M
    J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetically amenable amide derivatives of tosylated-amino acids as organocatalysts for enantioselective allylation of aldehydes: computational rationale for enantioselectivity.
    Ghosh D; Sahu D; Saravanan S; Abdi SH; Ganguly B; Khan NU; Kureshy RI; Bajaj HC
    Org Biomol Chem; 2013 Jun; 11(21):3451-60. PubMed ID: 23411590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of aluminum-catalyzed Meerwein-Schmidt-Ponndorf-Verley reduction of carbonyls to alcohols.
    Cohen R; Graves CR; Nguyen ST; Martin JM; Ratner MA
    J Am Chem Soc; 2004 Nov; 126(45):14796-803. PubMed ID: 15535705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.