These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 24713043)
1. Growth inhibitory effects of gossypol and related compounds on fungal cotton root pathogens. Mellon JE; Dowd MK; Beltz SB; Moore GG Lett Appl Microbiol; 2014 Aug; 59(2):161-8. PubMed ID: 24713043 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effects of gossypol, gossypolone, and apogossypolone on a collection of economically important filamentous fungi. Mellon JE; Zelaya CA; Dowd MK; Beltz SB; Klich MA J Agric Food Chem; 2012 Mar; 60(10):2740-5. PubMed ID: 22324794 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi. Mellon JE; Dowd MK; Beltz SB J Appl Microbiol; 2013 Jul; 115(1):179-86. PubMed ID: 23594138 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effects of gossypol-related compounds on growth of Aspergillus flavus. Mellon JE; Zelaya CA; Dowd MK Lett Appl Microbiol; 2011 Apr; 52(4):406-12. PubMed ID: 21291481 [TBL] [Abstract][Full Text] [Related]
5. Toxicity of (+)- and (-)-gossypol to the plant pathogen, Rhizoctonia solani. Puckhaber LS; Dowd MK; Stipanovic RD; Howell CR J Agric Food Chem; 2002 Nov; 50(24):7017-21. PubMed ID: 12428953 [TBL] [Abstract][Full Text] [Related]
7. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. Vinayarani G; Prakash HS World J Microbiol Biotechnol; 2018 Mar; 34(3):49. PubMed ID: 29541936 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Rhizoctonia solani RhCh-14 and Pythium ultimum PyFr-14 by Paenibacillus polymyxa NMA1017 and Burkholderia cenocepacia CACua-24: A proposal for biocontrol of phytopathogenic fungi. Chávez-Ramírez B; Kerber-Díaz JC; Acoltzi-Conde MC; Ibarra JA; Vásquez-Murrieta MS; Estrada-de Los Santos P Microbiol Res; 2020 Jan; 230():126347. PubMed ID: 31586859 [TBL] [Abstract][Full Text] [Related]
9. In vitro activities of Maesa lanceolata extracts against fungal plant pathogens. Okemo PO; Bais HP; Vivanco JM Fitoterapia; 2003 Apr; 74(3):312-6. PubMed ID: 12727503 [TBL] [Abstract][Full Text] [Related]
10. Effects of nematicides on cotton root mycobiota. Baird RE; Carling DE; Watson CE; Scruggs ML; Hightower P Mycopathologia; 2004 Feb; 157(2):191-9. PubMed ID: 15119856 [TBL] [Abstract][Full Text] [Related]
11. Antifungal activities of N-arylbenzenesulfonamides against phytopathogens and control efficacy on wheat leaf rust and cabbage club root diseases. Kang JG; Hur JH; Choi SJ; Choi GJ; Cho KY; Ten LN; Park KH; Kang KY Biosci Biotechnol Biochem; 2002 Dec; 66(12):2677-82. PubMed ID: 12596866 [TBL] [Abstract][Full Text] [Related]
12. Isolation and identification of antifungal N-butylbenzenesulphonamide produced by Pseudomonas sp. AB2. Kim KK; Kang JG; Moon SS; Kang KY J Antibiot (Tokyo); 2000 Feb; 53(2):131-6. PubMed ID: 10805572 [TBL] [Abstract][Full Text] [Related]
13. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Andersen JB; Koch B; Nielsen TH; Sørensen D; Hansen M; Nybroe O; Christophersen C; Sørensen J; Molin S; Givskov M Microbiology (Reading); 2003 Jan; 149(Pt 1):37-46. PubMed ID: 12576578 [TBL] [Abstract][Full Text] [Related]
14. Antifungal activity of alkyl and heterocyclic aza-derivatives of gossypol as well as their complexes with NaClO4 against Fusarium oxysporum f. sp. lupini. Przybylski P; Pyta K; Remlein-Starosta D; Schroeder G; Brzezinski B; Bartl F Bioorg Med Chem Lett; 2009 Apr; 19(7):1996-2000. PubMed ID: 19264482 [TBL] [Abstract][Full Text] [Related]
15. Antifungal activities of four fatty acids against plant pathogenic fungi. Walters D; Raynor L; Mitchell A; Walker R; Walker K Mycopathologia; 2004 Jan; 157(1):87-90. PubMed ID: 15008350 [TBL] [Abstract][Full Text] [Related]
16. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Yuan WM; Crawford DL Appl Environ Microbiol; 1995 Aug; 61(8):3119-28. PubMed ID: 7487043 [TBL] [Abstract][Full Text] [Related]
17. Secondary metabolites produced by a root-inhabiting sterile fungus antagonistic towards pathogenic fungi. Vinale F; Ghisalberti EL; Flematti G; Marra R; Lorito M; Sivasithamparam K Lett Appl Microbiol; 2010 Apr; 50(4):380-5. PubMed ID: 20156309 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of soil microorganisms with inhibitory activity against Rhizoctonia solani causal agent of the damping-off of canola. Ciampi L; Tewari JP Arch Biol Med Exp; 1990 Oct; 23(2):101-12. PubMed ID: 2133515 [TBL] [Abstract][Full Text] [Related]
19. Stilbene Derivatives from Photorhabdus temperata SN259 and Their Antifungal Activities against Phytopathogenic Fungi. Shi D; An R; Zhang W; Zhang G; Yu Z J Agric Food Chem; 2017 Jan; 65(1):60-65. PubMed ID: 27960253 [TBL] [Abstract][Full Text] [Related]
20. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Agarwal M; Dheeman S; Dubey RC; Kumar P; Maheshwari DK; Bajpai VK Microbiol Res; 2017 Dec; 205():40-47. PubMed ID: 28942843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]