These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24713043)

  • 21. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens.
    Eweis M; Elkholy SS; Elsabee MZ
    Int J Biol Macromol; 2006 Feb; 38(1):1-8. PubMed ID: 16413607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The production of antifungal volatiles by Bacillus subtilis.
    Fiddaman PJ; Rossall S
    J Appl Bacteriol; 1993 Feb; 74(2):119-26. PubMed ID: 8444640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi].
    Tomilova OG; Shternshis MV
    Prikl Biokhim Mikrobiol; 2006; 42(1):76-80. PubMed ID: 16521581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifungal and antiproliferative activities of endophytic fungi isolated from the leaves of Markhamia tomentosa.
    Ibrahim M; Kaushik N; Sowemimo A; Chhipa H; Koekemoer T; van de Venter M; Odukoya OA
    Pharm Biol; 2017 Dec; 55(1):590-595. PubMed ID: 27937112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings.
    Wang C; Wang D; Zhou Q
    Can J Microbiol; 2004 Jul; 50(7):475-81. PubMed ID: 15381971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory effects of essential oils of medicinal plants from growth of plant pathogenic fungi.
    Panjehkeh N; Jahani Hossein-Abadi Z
    Commun Agric Appl Biol Sci; 2011; 76(4):705-14. PubMed ID: 22702190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture.
    Lygin AV; Hill CB; Pawlowski M; Zernova OV; Widholm JM; Hartman GL; Lozovaya VV
    Phytopathology; 2014 Aug; 104(8):843-50. PubMed ID: 24502206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antifungal activity of rhizospheric bacteria.
    Mezaache S; Guechi A; Zerroug MM; Strange RN; Nicklin J
    Commun Agric Appl Biol Sci; 2010; 75(4):671-4. PubMed ID: 21534477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of Vitis vinifera Tendrils Extract Against Phytopathogenic Fungi.
    Fraternale D; Ricci D; Verardo G; Gorassini A; Stocchia V; Sestili P
    Nat Prod Commun; 2015 Jun; 10(6):1037-42. PubMed ID: 26197546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and antifungal activity of methyl 2,3-dihydroxybenzoate from Paenibacillus elgii HOA73.
    Lee YS; Nguyen XH; Cho JY; Moon JH; Kim KY
    Microb Pathog; 2017 May; 106():139-145. PubMed ID: 26796297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring Antifungal Agents of
    Ma YN; Chen CJ; Li QQ; Xu FR; Cheng YX; Dong X
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30626142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes.
    You MP; Lamichhane JR; Aubertot JN; Barbetti MJ
    Plant Dis; 2020 Mar; 104(3):904-920. PubMed ID: 31859588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Host plant effects on activity of the mitosporic fungi Beauveria bassiana and Paecilomyces fumosoroseus against two populations of Bemisia whiteflies (Homoptera: Aleyrodidae).
    Poprawski TJ; Jones WJ
    Mycopathologia; 2001; 151(1):11-20. PubMed ID: 11502058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and antifungal activity of 2-allylphenol derivatives against fungal plant pathogens.
    Qu T; Gao S; Li J; Hao JJ; Ji P
    Pestic Biochem Physiol; 2017 Jan; 135():47-51. PubMed ID: 28043330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. iTRAQ-based proteomic analysis of defence responses triggered by the necrotrophic pathogen Rhizoctonia solani in cotton.
    Zhang M; Cheng ST; Wang HY; Wu JH; Luo YM; Wang Q; Wang FX; Xia GX
    J Proteomics; 2017 Jan; 152():226-235. PubMed ID: 27871873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal activity of Tagetes patula extracts on some phytopathogenic fungi: ultrastructural evidence on Pythium ultimum.
    Mares D; Tosi B; Poli F; Andreotti E; Romagnoli C
    Microbiol Res; 2004; 159(3):295-304. PubMed ID: 15462529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in Active Defense Responses of Two Gossypium barbadense L. Cultivars Resistant to Fusarium oxysporum f. sp. vasinfectum Race 4.
    Puckhaber LS; Zheng X; Bell AA; Stipanovic RD; Nichols RL; Liu J; Duke SE
    J Agric Food Chem; 2018 Dec; 66(49):12961-12966. PubMed ID: 30380850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Osmotic effects on radial growth rate and specific growth rate of three soil fungi.
    Sterne RE; McCarver TH
    Can J Microbiol; 1978 Nov; 24(11):1434-7. PubMed ID: 570448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Nanofungicides Based on Imidazole Drugs and Their Antifungal Evaluation.
    Tippannanavar M; Verma A; Kumar R; Gogoi R; Kundu A; Patanjali N
    J Agric Food Chem; 2020 Apr; 68(16):4566-4578. PubMed ID: 32227935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium.
    Harris AR
    Microbiol Res; 2000 Mar; 154(4):333-7. PubMed ID: 10772155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.