These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24713235)
1. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. Liu H; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Chung WJ Bioresour Technol; 2014 May; 159():455-9. PubMed ID: 24713235 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Escherichia coli for biosynthesis of D-galactonate. Liu H; Ramos KR; Valdehuesa KN; Nisola GM; Malihan LB; Lee WK; Park SJ; Chung WJ Bioprocess Biosyst Eng; 2014 Mar; 37(3):383-91. PubMed ID: 23820824 [TBL] [Abstract][Full Text] [Related]
3. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae. Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800 [TBL] [Abstract][Full Text] [Related]
4. L-Arabinose 1-dehydrogenase: a novel enzyme involving in bacterial L-arabinose metabolism. Watanabe S; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2005; (49):309-10. PubMed ID: 17150757 [TBL] [Abstract][Full Text] [Related]
5. Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production. Xue M; Feng S; Xie F; Zhao H; Xue Y World J Microbiol Biotechnol; 2022 Sep; 38(12):223. PubMed ID: 36109417 [TBL] [Abstract][Full Text] [Related]
6. Structural insights into the catalytic and substrate recognition mechanisms of bacterial l-arabinose 1-dehydrogenase. Watanabe Y; Iga C; Watanabe Y; Watanabe S FEBS Lett; 2019 Jun; 593(11):1257-1266. PubMed ID: 31058311 [TBL] [Abstract][Full Text] [Related]
7. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. Watanabe S; Kodaki T; Makino K J Biol Chem; 2006 Feb; 281(5):2612-23. PubMed ID: 16326697 [TBL] [Abstract][Full Text] [Related]
8. The pathway for L-galactonate catabolism in Escherichia coli K-12. Cooper RA FEBS Lett; 1979 Jul; 103(2):216-20. PubMed ID: 381020 [No Abstract] [Full Text] [Related]
9. Production and characterization of L-fucose dehydrogenase from newly isolated Acinetobacter sp. strain SA-134. Ohshiro T; Morita N Prep Biochem Biotechnol; 2014; 44(4):382-91. PubMed ID: 24320238 [TBL] [Abstract][Full Text] [Related]
10. The yjjN of E. coli codes for an L-galactonate dehydrogenase and can be used for quantification of L-galactonate and L-gulonate. Kuivanen J; Richard P Appl Biochem Biotechnol; 2014 Aug; 173(7):1829-35. PubMed ID: 24861318 [TBL] [Abstract][Full Text] [Related]
11. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Sasaki M; Vertès AA; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Jan; 77(5):1053-62. PubMed ID: 17965859 [TBL] [Abstract][Full Text] [Related]
12. High yield production of D-xylonic acid from D-xylose using engineered Escherichia coli. Liu H; Valdehuesa KN; Nisola GM; Ramos KR; Chung WJ Bioresour Technol; 2012 Jul; 115():244-8. PubMed ID: 21917451 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase, and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism. Novel evolutionary insight into sugar metabolism. Watanabe S; Shimada N; Tajima K; Kodaki T; Makino K J Biol Chem; 2006 Nov; 281(44):33521-36. PubMed ID: 16950779 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001. Gao L; Du G; Zhou J; Chen J; Liu J Biotechnol Prog; 2013; 29(6):1398-404. PubMed ID: 23970495 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Escherichia coli for the production of xylonate. Cao Y; Xian M; Zou H; Zhang H PLoS One; 2013; 8(7):e67305. PubMed ID: 23861757 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of bacterial L-arabinose 1-dehydrogenase in complex with L-arabinose and NADP Yoshiwara K; Watanabe S; Watanabe Y Biochem Biophys Res Commun; 2020 Sep; 530(1):203-208. PubMed ID: 32828286 [TBL] [Abstract][Full Text] [Related]
17. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Wang Y; Tian T; Zhao J; Wang J; Yan T; Xu L; Liu Z; Garza E; Iverson A; Manow R; Finan C; Zhou S Biotechnol Lett; 2012 Nov; 34(11):2069-75. PubMed ID: 22791225 [TBL] [Abstract][Full Text] [Related]
18. [Production of D-mannitol by metabolically engineered Escherichia coli]. Wang X; Chen J; Liu P; Xu H; Yu P; Zhang X Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1450-62. PubMed ID: 24432660 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2011; 75(12):2418-20. PubMed ID: 22146735 [TBL] [Abstract][Full Text] [Related]
20. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]