These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24713235)

  • 21. L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase.
    Johnsen U; Sutter JM; Zaiß H; Schönheit P
    Extremophiles; 2013 Nov; 17(6):897-909. PubMed ID: 23949136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution.
    Watanabe S; Yamada M; Ohtsu I; Makino K
    J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli.
    Kim YS; Lee JH; Kim NH; Yeom SJ; Kim SW; Oh DK
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):489-97. PubMed ID: 21246354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate and metabolic promiscuities of d-altronate dehydratase family proteins involved in non-phosphorylative d-arabinose, sugar acid, l-galactose and l-fucose pathways from bacteria.
    Watanabe S; Fukumori F; Watanabe Y
    Mol Microbiol; 2019 Jul; 112(1):147-165. PubMed ID: 30985034
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans.
    Saito Y; Ishii Y; Hayashi H; Yoshikawa K; Noguchi Y; Yoshida S; Soeda S; Yoshida M
    Biotechnol Bioeng; 1998 Apr 20-May 5; 58(2-3):309-15. PubMed ID: 10191408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.
    Sutter JM; Johnsen U; Schönheit P
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of succinic acid from sucrose and sugarcane molasses by metabolically engineered Escherichia coli.
    Chan S; Kanchanatawee S; Jantama K
    Bioresour Technol; 2012 Jan; 103(1):329-36. PubMed ID: 22023966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineered Escherichia coli.
    Wu H; Lee J; Karanjikar M; San KY
    Bioresour Technol; 2014 Oct; 169():119-125. PubMed ID: 25043344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The D-galacturonic acid catabolic pathway in Botrytis cinerea.
    Zhang L; Thiewes H; van Kan JA
    Fungal Genet Biol; 2011 Oct; 48(10):990-7. PubMed ID: 21683149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Introduction of a stress-responsive gene, yggG, enhances the yield of L-phenylalanine with decreased acetic acid production in a recombinant Escherichia coli.
    Ojima Y; Komaki M; Nishioka M; Iwatani S; Tsujimoto N; Taya M
    Biotechnol Lett; 2009 Apr; 31(4):525-30. PubMed ID: 19125225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.
    Sakakibara Y; Saha BC; Taylor P
    J Biosci Bioeng; 2009 May; 107(5):506-11. PubMed ID: 19393548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosynthesis of enantiopure (S)-3-hydroxybutyric acid in metabolically engineered Escherichia coli.
    Lee SH; Park SJ; Lee SY; Hong SH
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):633-41. PubMed ID: 18461320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Engineering of an L-arabinose metabolic pathway in Ralstonia eutropha W50].
    Lu X; Liu G; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2013 Dec; 53(12):1267-75. PubMed ID: 24697099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient production of free fatty acids from soybean meal carbohydrates.
    Wang D; Thakker C; Liu P; Bennett GN; San KY
    Biotechnol Bioeng; 2015 Nov; 112(11):2324-33. PubMed ID: 25943383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Production of L-lactic acid from pentose by a genetically engineered Escherichia coli].
    Zhao J; Xu L; Wang Y; Zhao X; Wang J
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):328-37. PubMed ID: 23858707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered Escherichia coli capable of co-utilization of cellobiose and xylose.
    Vinuselvi P; Lee SK
    Enzyme Microb Technol; 2012 Jan; 50(1):1-4. PubMed ID: 22133432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
    Bera AK; Sedlak M; Khan A; Ho NW
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.