These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24713419)

  • 1. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila.
    Bello B; Holbro N; Reichert H
    Development; 2007 Mar; 134(6):1091-9. PubMed ID: 17287254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain.
    Kuert PA; Bello BC; Reichert H
    Biol Open; 2012 Oct; 1(10):1006-15. PubMed ID: 23213378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain.
    Izergina N; Balmer J; Bello B; Reichert H
    Neural Dev; 2009 Dec; 4():44. PubMed ID: 20003348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones.
    Wong DC; Lovick JK; Ngo KT; Borisuthirattana W; Omoto JJ; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):258-89. PubMed ID: 23872236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.
    Birkholz O; Rickert C; Berger C; Urbach R; Technau GM
    Development; 2013 Apr; 140(8):1830-42. PubMed ID: 23533181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.
    Lovick JK; Kong A; Omoto JJ; Ngo KT; Younossi-Hartenstein A; Hartenstein V
    Dev Neurobiol; 2016 Apr; 76(4):434-51. PubMed ID: 26178322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila.
    Viktorin G; Riebli N; Reichert H
    Dev Biol; 2013 Jul; 379(2):182-94. PubMed ID: 23628691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain.
    Jiang Y; Reichert H
    Neural Dev; 2012 Jan; 7():3. PubMed ID: 22257485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-specific cell death in postembryonic brain development of Drosophila.
    Kumar A; Bello B; Reichert H
    Development; 2009 Oct; 136(20):3433-42. PubMed ID: 19762424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors.
    Tsuji T; Hasegawa E; Isshiki T
    Development; 2008 Dec; 135(23):3859-69. PubMed ID: 18948419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells.
    Boone JQ; Doe CQ
    Dev Neurobiol; 2008 Aug; 68(9):1185-95. PubMed ID: 18548484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.
    Dumstrei K; Wang F; Nassif C; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):451-62. PubMed ID: 12508319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular configuration of single octopamine neurons in Drosophila.
    Busch S; Tanimoto H
    J Comp Neurol; 2010 Jun; 518(12):2355-64. PubMed ID: 20437532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed cell death in the embryonic central nervous system of Drosophila melanogaster.
    Rogulja-Ortmann A; Lüer K; Seibert J; Rickert C; Technau GM
    Development; 2007 Jan; 134(1):105-16. PubMed ID: 17164416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Homothorax in region specific regulation of Deformed in embryonic neuroblasts.
    Kumar R; Chotaliya M; Vuppala S; Auradkar A; Palasamudrum K; Joshi R
    Mech Dev; 2015 Nov; 138 Pt 2():190-197. PubMed ID: 26409112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex.
    Bayraktar OA; Boone JQ; Drummond ML; Doe CQ
    Neural Dev; 2010 Oct; 5():26. PubMed ID: 20920301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster.
    Berger C; Pallavi SK; Prasad M; Shashidhara LS; Technau GM
    Nat Cell Biol; 2005 Jan; 7(1):56-62. PubMed ID: 15580266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5.
    Ferreira HB; Zhang Y; Zhao C; Emmons SW
    Dev Biol; 1999 Mar; 207(1):215-28. PubMed ID: 10049576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.