BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 24713422)

  • 21. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?
    Garlid AO; Jaburek M; Jacobs JP; Garlid KD
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(7):H960-8. PubMed ID: 23913710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes.
    Lozano O; Silva-Platas C; Chapoy-Villanueva H; Pérez BE; Lees JG; Ramachandra CJA; Contreras-Torres FF; Lázaro-Alfaro A; Luna-Figueroa E; Bernal-Ramírez J; Gordillo-Galeano A; Benitez A; Oropeza-Almazán Y; Castillo EC; Koh PL; Hausenloy DJ; Lim SY; García-Rivas G
    Part Fibre Toxicol; 2020 May; 17(1):15. PubMed ID: 32381100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mitochondrial bioenergetic phenotype for protection from cardiac ischemia in SUR2 mutant mice.
    Aggarwal NT; Pravdic D; McNally EM; Bosnjak ZJ; Shi NQ; Makielski JC
    Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1884-90. PubMed ID: 20935152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects.
    Lucas AM; Caldas FR; da Silva AP; Ventura MM; Leite IM; Filgueiras AB; Silva CG; Kowaltowski AJ; Facundo HT
    Chem Biol Interact; 2017 Jan; 261():50-55. PubMed ID: 27867086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signalling and reactive oxygen species-generating pathways.
    Jung C; Martins AS; Niggli E; Shirokova N
    Cardiovasc Res; 2008 Mar; 77(4):766-73. PubMed ID: 18056762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia.
    Joseph LC; Subramanyam P; Radlicz C; Trent CM; Iyer V; Colecraft HM; Morrow JP
    Heart Rhythm; 2016 Aug; 13(8):1699-706. PubMed ID: 27154230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrhythmogenic adverse effects of cardiac glycosides are mediated by redox modification of ryanodine receptors.
    Ho HT; Stevens SC; Terentyeva R; Carnes CA; Terentyev D; Györke S
    J Physiol; 2011 Oct; 589(Pt 19):4697-708. PubMed ID: 21807619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Action of yttrium on calcium-dependent processes in myocardium of vertebrates].
    Shemarova IV; Sobol CV; Korotkov SM; Nesterov VP
    Zh Evol Biokhim Fiziol; 2014; 50(3):196-200. PubMed ID: 25775853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relevance of mitochondrial oxidative stress to arrhythmias: Innovative concepts to target treatments.
    Liu C; Ma N; Guo Z; Zhang Y; Zhang J; Yang F; Su X; Zhang G; Xiong X; Xing Y
    Pharmacol Res; 2022 Jan; 175():106027. PubMed ID: 34890774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Opening of mitochondrial K(ATP) channels triggers cardioprotection. Are reactive oxygen species involved?
    Liu Y; O'Rourke B
    Circ Res; 2001 Apr; 88(8):750-2. PubMed ID: 11325864
    [No Abstract]   [Full Text] [Related]  

  • 31. Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts.
    Johansen D; Sanden E; Hagve M; Chu X; Sundset R; Ytrehus K
    Acta Physiol (Oxf); 2011 Apr; 201(4):435-44. PubMed ID: 21070611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mitochondrial calcium uniporter promotes arrhythmias caused by high-fat diet.
    Joseph LC; Reyes MV; Homan EA; Gowen B; Avula UMR; Goulbourne CN; Wan EY; Elrod JW; Morrow JP
    Sci Rep; 2021 Sep; 11(1):17808. PubMed ID: 34497331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.
    Zhou L; Cortassa S; Wei AC; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2009 Oct; 97(7):1843-52. PubMed ID: 19804714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study.
    Li Q; Su D; O'Rourke B; Pogwizd SM; Zhou L
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H623-36. PubMed ID: 25539710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting calcium and the mitochondria in prevention of pathology in the heart.
    Viola HM; Hool LC
    Curr Drug Targets; 2011 May; 12(5):748-60. PubMed ID: 21291390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration.
    Yang KC; Chuang KW; Yen WS; Lin SY; Chen HH; Chang SW; Lin YS; Wu WL; Tsao YP; Chen WP; Chen SL
    J Mol Cell Cardiol; 2019 Dec; 137():9-24. PubMed ID: 31629737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection.
    Queliconi BB; Wojtovich AP; Nadtochiy SM; Kowaltowski AJ; Brookes PS
    Biochim Biophys Acta; 2011 Jul; 1813(7):1309-15. PubMed ID: 21094666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium Signaling and Reactive Oxygen Species in Mitochondria.
    Bertero E; Maack C
    Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
    Zhou L; Aon MA; Liu T; O'Rourke B
    J Mol Cell Cardiol; 2011 Nov; 51(5):632-9. PubMed ID: 21645518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncoupling protein-2 modulates myocardial excitation-contraction coupling.
    Turner JD; Gaspers LD; Wang G; Thomas AP
    Circ Res; 2010 Mar; 106(4):730-8. PubMed ID: 20056920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.