BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 24713858)

  • 1. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
    Basler D; Körner C
    Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The timing of bud burst and its effect on tree growth.
    Rötzer T; Grote R; Pretzsch H
    Int J Biometeorol; 2004 Feb; 48(3):109-18. PubMed ID: 14564495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling.
    Granhus A; Fløistad IS; Søgaard G
    Tree Physiol; 2009 Apr; 29(4):497-503. PubMed ID: 19203964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology-based phenology models for forest tree species in Germany.
    Schaber J; Badeck FW
    Int J Biometeorol; 2003 Aug; 47(4):193-201. PubMed ID: 12698325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest.
    Klein T; Vitasse Y; Hoch G
    Tree Physiol; 2016 Jul; 36(7):847-55. PubMed ID: 27126226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades.
    Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y
    Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca).
    Hamilton JA; El Kayal W; Hart AT; Runcie DE; Arango-Velez A; Cooke JE
    Tree Physiol; 2016 Nov; 36(11):1432-1448. PubMed ID: 27449791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut.
    Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA
    Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments?
    Vitasse Y; Basler D
    Tree Physiol; 2014 Feb; 34(2):174-83. PubMed ID: 24488858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception of photoperiod in individual buds of mature trees regulates leaf-out.
    Zohner CM; Renner SS
    New Phytol; 2015 Dec; 208(4):1023-30. PubMed ID: 26096967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the soil on spring and autumn phenology in European beech.
    Arend M; Gessler A; Schaub M
    Tree Physiol; 2016 Jan; 36(1):78-85. PubMed ID: 26420791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce.
    Søgaard G; Johnsen O; Nilsen J; Junttila O
    Tree Physiol; 2008 Feb; 28(2):311-20. PubMed ID: 18055441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenology and growth of Fagus sylvatica and Quercus robur seedlings in response to temperature variation in the parental versus offspring generation.
    Dewan S; De Frenne P; Leroux O; Nijs I; Vander Mijnsbrugge K; Verheyen K
    Plant Biol (Stuttg); 2020 Jan; 22 Suppl 1():113-122. PubMed ID: 30739399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures.
    Viherä-Aarnio A; Sutinen S; Partanen J; Häkkinen R
    Tree Physiol; 2014 May; 34(5):547-56. PubMed ID: 24876293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology.
    Vitasse Y; Porté AJ; Kremer A; Michalet R; Delzon S
    Oecologia; 2009 Aug; 161(1):187-98. PubMed ID: 19449036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment.
    Hänninen H; Slaney M; Linder S
    Tree Physiol; 2007 Feb; 27(2):291-300. PubMed ID: 17241971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone.
    Marquis B; Bergeron Y; Simard M; Tremblay F
    Front Plant Sci; 2020; 11():1031. PubMed ID: 32849673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Night interruption provides evidence for photoperiodic regulation of bud burst in Japanese beech,
    Ohno M; Yamawo A
    Plant Signal Behav; 2021 Dec; 16(12):1982562. PubMed ID: 34632946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests.
    Richardson AD; Hollinger DY; Dail DB; Lee JT; Munger JW; O'keefe J
    Tree Physiol; 2009 Mar; 29(3):321-31. PubMed ID: 19203967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.