These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24714491)

  • 1. Encounter complexes and dimensionality reduction in protein-protein association.
    Kozakov D; Li K; Hall DR; Beglov D; Zheng J; Vakili P; Schueler-Furman O; Paschalidis ICh; Clore GM; Vajda S
    Elife; 2014 Apr; 3():e01370. PubMed ID: 24714491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds.
    Padhorny D; Kazennov A; Zerbe BS; Porter KA; Xia B; Mottarella SE; Kholodov Y; Ritchie DW; Vajda S; Kozakov D
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4286-93. PubMed ID: 27412858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein docking refinement by convex underestimation in the low-dimensional subspace of encounter complexes.
    Zarbafian S; Moghadasi M; Roshandelpoor A; Nan F; Li K; Vakli P; Vajda S; Kozakov D; Paschalidis IC
    Sci Rep; 2018 Apr; 8(1):5896. PubMed ID: 29650980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations.
    Siebenmorgen T; Zacharias M
    J Chem Theory Comput; 2019 Mar; 15(3):2071-2086. PubMed ID: 30698954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Markov-chain model description of binding funnels to enhance the ranking of docked solutions.
    Torchala M; Moal IH; Chaleil RA; Agius R; Bates PA
    Proteins; 2013 Dec; 81(12):2143-9. PubMed ID: 23900714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein docking by the underestimation of free energy funnels in the space of encounter complexes.
    Shen Y; Paschalidis ICh; Vakili P; Vajda S
    PLoS Comput Biol; 2008 Oct; 4(10):e1000191. PubMed ID: 18846200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.
    Moritsugu K; Terada T; Kidera A
    PLoS Comput Biol; 2014 Oct; 10(10):e1003901. PubMed ID: 25340714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement.
    Clore GM
    Mol Biosyst; 2008 Nov; 4(11):1058-69. PubMed ID: 18931781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Coarse-Grained Simulations to Characterize the Mechanisms of Protein-Protein Association.
    Dhusia K; Su Z; Wu Y
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32679892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How common is the funnel-like energy landscape in protein-protein interactions?
    Tovchigrechko A; Vakser IA
    Protein Sci; 2001 Aug; 10(8):1572-83. PubMed ID: 11468354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems.
    Kurkcuoglu Z; Bonvin AMJJ
    Proteins; 2020 Feb; 88(2):292-306. PubMed ID: 31441121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Euclidean sections of protein conformation space and their implications in dimensionality reduction.
    Duan M; Li M; Han L; Huo S
    Proteins; 2014 Oct; 82(10):2585-96. PubMed ID: 24913095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoothing protein energy landscapes by integrating folding models with structure prediction.
    Pritchard-Bell A; Shell MS
    Biophys J; 2011 Nov; 101(9):2251-9. PubMed ID: 22067165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-protein docking with multiple residue conformations and residue substitutions.
    Lorber DM; Udo MK; Shoichet BK
    Protein Sci; 2002 Jun; 11(6):1393-408. PubMed ID: 12021438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replica exchange simulations of transient encounter complexes in protein-protein association.
    Kim YC; Tang C; Clore GM; Hummer G
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12855-60. PubMed ID: 18728193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions.
    Oliwa T; Shen Y
    Bioinformatics; 2015 Jun; 31(12):i151-60. PubMed ID: 26072477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.