BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24714922)

  • 1. A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules.
    Li X; Wang Y; Wang L; Wei Q
    Chem Commun (Camb); 2014 May; 50(39):5049-52. PubMed ID: 24714922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction.
    Ding X; Cheng W; Li Y; Wu J; Li X; Cheng Q; Ding S
    Biosens Bioelectron; 2017 Jan; 87():345-351. PubMed ID: 27587359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays.
    Kim SA; Byun KM; Kim K; Jang SM; Ma K; Oh Y; Kim D; Kim SG; Shuler ML; Kim SJ
    Nanotechnology; 2010 Sep; 21(35):355503. PubMed ID: 20693616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry.
    Kim DK; Kerman K; Saito M; Sathuluri RR; Endo T; Yamamura S; Kwon YS; Tamiya E
    Anal Chem; 2007 Mar; 79(5):1855-64. PubMed ID: 17261024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-Sensitive Surface Plasmon Resonance Detection by Colocalized 3D Plasmonic Nanogap Arrays.
    Lee W; Son T; Lee C; Oh Y; Kim D
    Methods Mol Biol; 2017; 1571():15-29. PubMed ID: 28281247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-free and label-free ultrasensitive electrochemical detection of DNA and adenosine triphosphate by dendritic DNA concatamer-based signal amplification.
    Liu S; Lin Y; Liu T; Cheng C; Wei W; Wang L; Li F
    Biosens Bioelectron; 2014 Jun; 56():12-8. PubMed ID: 24445068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode.
    Li A; Yang F; Ma Y; Yang X
    Biosens Bioelectron; 2007 Mar; 22(8):1716-22. PubMed ID: 16959483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.
    Yao GH; Liang RP; Yu XD; Huang CF; Zhang L; Qiu JD
    Anal Chem; 2015 Jan; 87(2):929-36. PubMed ID: 25494977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method.
    Vaisocherová H; Zítová A; Lachmanová M; Stepánek J; Králíková S; Liboska R; Rejman D; Rosenberg I; Homola J
    Biopolymers; 2006 Jul; 82(4):394-8. PubMed ID: 16365848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for the detection of DNA sequences in amplified nucleic acids by a surface plasmon resonance biosensor.
    Wang R; Minunni M; Tombelli S; Mascini M
    Biosens Bioelectron; 2004 Oct; 20(3):598-605. PubMed ID: 15494245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification.
    Niu S; Jiang Y; Zhang S
    Chem Commun (Camb); 2010 May; 46(18):3089-91. PubMed ID: 20424746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy.
    Wang J; Munir A; Zhou HS
    Talanta; 2009 Jun; 79(1):72-6. PubMed ID: 19376346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors.
    Dudak FC; Boyaci IH
    Biotechnol J; 2009 Jul; 4(7):1003-11. PubMed ID: 19288516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization.
    Su X; Wu YJ; Knoll W
    Biosens Bioelectron; 2005 Nov; 21(5):719-26. PubMed ID: 16242610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point mutation detection by surface plasmon resonance imaging coupled with a temperature scan method in a model system.
    Fiche JB; Fuchs J; Buhot A; Calemczuk R; Livache T
    Anal Chem; 2008 Feb; 80(4):1049-57. PubMed ID: 18211033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous detection of transgenic DNA by surface plasmon resonance imaging with potential application to gene doping detection.
    Scarano S; Ermini ML; Spiriti MM; Mascini M; Bogani P; Minunni M
    Anal Chem; 2011 Aug; 83(16):6245-53. PubMed ID: 21755925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilisation of DNA probes for the development of SPR-based sensing.
    Wang R; Tombelli S; Minunni M; Spiriti MM; Mascini M
    Biosens Bioelectron; 2004 Nov; 20(5):967-74. PubMed ID: 15530793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of DNA hybridisation in a diluted serum matrix by surface plasmon resonance and film bulk acoustic resonators.
    Auer S; Nirschl M; Schreiter M; Vikholm-Lundin I
    Anal Bioanal Chem; 2011 May; 400(5):1387-96. PubMed ID: 21472364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of HLA-B*27 gene using a spectral plasmon resonance imaging system.
    Yang Y; Yuan L; Fang X; Liang X; Yang F
    Biosens Bioelectron; 2013 Aug; 46():80-3. PubMed ID: 23524147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.