BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2471518)

  • 1. Valinomycin binds stoichiometrically to cytochrome c oxidase and changes its structure and function.
    Steverding D; Kadenbach B
    Biochem Biophys Res Commun; 1989 May; 160(3):1132-9. PubMed ID: 2471518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles.
    Singh AP; Nicholls P
    Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The K(+)-ionophores nonactin and valinomycin interact differently with the protein of reconstituted cytochrome c oxidase.
    Steverding D; Kadenbach B
    J Bioenerg Biomembr; 1990 Apr; 22(2):197-205. PubMed ID: 2158497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The charge stoichiometry of cytochrome c oxidase in the reconstituted system.
    Sigel E; Carafoli E
    J Biol Chem; 1979 Nov; 254(21):10572-4. PubMed ID: 40970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct and indirect effects of valinomycin upon cytochrome c oxidase.
    Nicholls P; He J
    Arch Biochem Biophys; 1993 Mar; 301(2):305-10. PubMed ID: 8384831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular properties of reconstituted cytochrome c oxidase: new evidence supports vectorial proton translocation.
    Azzi A; Müller M; O'Shea P; Thelen M
    J Inorg Biochem; 1985; 23(3-4):341-7. PubMed ID: 2410566
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetics of redox-linked proton pumping activity of native and subunit III-depleted cytochrome c oxidase: a stopped-flow investigation.
    Sarti P; Jones MG; Antonini G; Malatesta F; Colosimo A; Wilson MT; Brunori M
    Proc Natl Acad Sci U S A; 1985 Aug; 82(15):4876-80. PubMed ID: 2410909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the proton and charge stoichiometry of cytochrome c oxidase from beef heart reconstituted into phospholipid vesicles.
    Sigel E; Carafoli E
    Eur J Biochem; 1980 Oct; 111(2):299-306. PubMed ID: 6257505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation transport in cytochrome oxidase reconstituted vesicles.
    Gutweniger H; Massari S; Beltrame M; Colonna R
    Biochim Biophys Acta; 1977 Feb; 459(2):216-24. PubMed ID: 13827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of the redox-linked proton ejection in beef-heart cytochrome c oxidase reconstituted in liposomes.
    Papa S; Capitanio N; De Nitto E
    Eur J Biochem; 1987 May; 164(3):507-16. PubMed ID: 3032620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential movement of ions in artificial phospholipid vesicles.
    Sedgwick EG; Bragg PD
    FEBS Lett; 1990 Oct; 272(1-2):81-4. PubMed ID: 1699806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evaluation of the evidence for H+ pumping by reconstituted cytochrome c oxidase in the light of recent criticism.
    Casey RP; Azzi A
    FEBS Lett; 1983 Apr; 154(2):237-42. PubMed ID: 6299800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase.
    Moroney PM; Scholes TA; Hinkle PC
    Biochemistry; 1984 Oct; 23(21):4991-7. PubMed ID: 6093868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution.
    Singh AP; Nicholls P
    Arch Biochem Biophys; 1986 Mar; 245(2):436-45. PubMed ID: 3006593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic characterization of cytochrome c oxidase from Bacillus subtilis.
    de Vrij W; Konings WN
    Eur J Biochem; 1987 Aug; 166(3):581-7. PubMed ID: 3038545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase exhibit proton translocating activity in the presence of gramicidin.
    Prochaska LJ; Wilson KS
    Arch Biochem Biophys; 1991 Oct; 290(1):179-85. PubMed ID: 1716878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.