These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 24715475)
1. Transport of 3-bromopyruvate across the human erythrocyte membrane. Sadowska-Bartosz I; Soszyński M; Ułaszewski S; Ko Y; Bartosz G Cell Mol Biol Lett; 2014 Jun; 19(2):201-14. PubMed ID: 24715475 [TBL] [Abstract][Full Text] [Related]
2. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Halestrap AP Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406 [TBL] [Abstract][Full Text] [Related]
3. Pyruvate transport into inside-out vesicles isolated from human erythrocyte membranes. Rice WR; Steck TL Biochim Biophys Acta; 1977 Jul; 468(2):305-17. PubMed ID: 195608 [No Abstract] [Full Text] [Related]
4. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Edlund GL; Halestrap AP Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001 [TBL] [Abstract][Full Text] [Related]
5. Tempo-phosphate as an ESR tool to study phosphate transport. Sadowska-Bartosz I; Stefaniuk I; Cieniek B; Bartosz G Free Radic Res; 2018 Mar; 52(3):335-338. PubMed ID: 29092648 [TBL] [Abstract][Full Text] [Related]
6. Transport of phosphoenolpyruvate through the erythrocyte membrane. Hamasaki N; Hardjono IS; Minakami S Biochem J; 1978 Jan; 170(1):39-46. PubMed ID: 629781 [TBL] [Abstract][Full Text] [Related]
7. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane. Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217 [TBL] [Abstract][Full Text] [Related]
8. Chloride-independent transport of pyruvate and lactate across the erythrocyte membrane [proceedings]. Leeks DR; Halestrap AP Biochem Soc Trans; 1978; 6(6):1363-6. PubMed ID: 744429 [No Abstract] [Full Text] [Related]
9. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486 [TBL] [Abstract][Full Text] [Related]
10. Effect of 3-bromopyruvic acid on human erythrocyte antioxidant defense system. Sadowska-Bartosz I; Bartosz G Cell Biol Int; 2013 Dec; 37(12):1285-90. PubMed ID: 23881849 [TBL] [Abstract][Full Text] [Related]
11. Uptake of hypoxanthine in human erythrocytes. Müller MM; Falkner G Adv Exp Med Biol; 1977; 76B():131-8. PubMed ID: 16455 [No Abstract] [Full Text] [Related]
12. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. Schnell KF; Besl E; von der Mosel R J Membr Biol; 1981; 61(3):173-92. PubMed ID: 7277470 [TBL] [Abstract][Full Text] [Related]
13. Interaction of DL-, D- and L-propranolol with the transport system of glucose in human erythrocytes. Lacko L; Wittke B; Lacko I Arzneimittelforschung; 1979; 29(11):1685-7. PubMed ID: 44472 [TBL] [Abstract][Full Text] [Related]
14. Transport of drugs through human erythrocyte membranes: pH dependence of drug transport through labeled human erythrocytes in the presence of band 3 protein inhibitor. Matsumoto Y; Ohsako M J Pharm Sci; 1992 May; 81(5):428-31. PubMed ID: 1403673 [TBL] [Abstract][Full Text] [Related]
15. Glucose catabolism in African trypanosomes. Evidence that the terminal step is catalyzed by a pyruvate transporter capable of facilitating uptake of toxic analogs. Barnard JP; Reynafarje B; Pedersen PL J Biol Chem; 1993 Feb; 268(5):3654-61. PubMed ID: 8429041 [TBL] [Abstract][Full Text] [Related]
16. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes. Duhm J; Becker BF J Membr Biol; 1979 Dec; 51(3-4):263-86. PubMed ID: 43898 [TBL] [Abstract][Full Text] [Related]
17. Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Osty J; Jego L; Francon J; Blondeau JP Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926 [TBL] [Abstract][Full Text] [Related]
18. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS; Scriver CR J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070 [TBL] [Abstract][Full Text] [Related]
19. Thiamin transport by human erythrocytes and ghosts. Casirola D; Patrini C; Ferrari G; Rindi G J Membr Biol; 1990 Oct; 118(1):11-8. PubMed ID: 2283678 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells. Wang X; Poole RC; Halestrap AP; Levi AJ Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]