These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24715530)

  • 1. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis.
    Lopar M; Špoljarić IV; Cepanec N; Koller M; Braunegg G; Horvat P
    J Ind Microbiol Biotechnol; 2014 Jun; 41(6):913-30. PubMed ID: 24715530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator.
    Grousseau E; Blanchet E; Déléris S; Albuquerque MG; Paul E; Uribelarrea JL
    Bioresour Technol; 2013 Nov; 148():30-8. PubMed ID: 24035890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.
    Tanadchangsaeng N; Yu J
    Biotechnol Bioeng; 2012 Nov; 109(11):2808-18. PubMed ID: 22566160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of pentose phosphate pathway in Ralstoniaeutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate.
    Lee JN; Shin HD; Lee YH
    Biotechnol Prog; 2003; 19(5):1444-9. PubMed ID: 14524705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol.
    Spoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Horvat P
    J Biotechnol; 2013 Dec; 168(4):625-35. PubMed ID: 24001933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator.
    Obruca S; Benesova P; Oborna J; Marova I
    Biotechnol Lett; 2014 Apr; 36(4):775-81. PubMed ID: 24243232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic limitations of PHB production from formate and fructose in Cupriavidus necator.
    Janasch M; Crang N; Asplund-Samuelsson J; Sporre E; Bruch M; Gynnå A; Jahn M; Hudson EP
    Metab Eng; 2022 Sep; 73():256-269. PubMed ID: 35987434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli.
    Zhang Y; Lin Z; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X
    Microb Cell Fact; 2014 Dec; 13():172. PubMed ID: 25510247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator.
    Pradella JG; Ienczak JL; Delgado CR; Taciro MK
    Biotechnol Lett; 2012 Jun; 34(6):1003-7. PubMed ID: 22315097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunflower-based biorefinery: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid.
    Kachrimanidou V; Kopsahelis N; Papanikolaou S; Kookos IK; De Bruyn M; Clark JH; Koutinas AA
    Bioresour Technol; 2014 Nov; 172():121-130. PubMed ID: 25255188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol.
    Cavalheiro JM; Raposo RS; de Almeida MC; Cesário MT; Sevrin C; Grandfils C; da Fonseca MM
    Bioresour Technol; 2012 May; 111():391-7. PubMed ID: 22382294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).
    Mozumder MS; Goormachtigh L; Garcia-Gonzalez L; De Wever H; Volcke EI
    Bioresour Technol; 2014 Mar; 155():272-80. PubMed ID: 24457311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock.
    Saratale GD; Oh MK
    Int J Biol Macromol; 2015 Sep; 80():627-35. PubMed ID: 26206741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated batch cultivation of Ralstonia eutropha for Poly (beta-hydroxybutyrate) production.
    Khanna S; Srivastava AK
    Biotechnol Lett; 2005 Sep; 27(18):1401-3. PubMed ID: 16215857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator.
    Obruca S; Marova I; Svoboda Z; Mikulikova R
    Folia Microbiol (Praha); 2010 Jan; 55(1):17-22. PubMed ID: 20336499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545.
    Marudkla J; Lee WC; Wannawilai S; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2018 Feb; 268():12-20. PubMed ID: 29329945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production.
    Volova T; Demidenko A; Kiselev E; Baranovskiy S; Shishatskaya E; Zhila N
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):225-237. PubMed ID: 30367183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential processing with fermentative Caldicellulosiruptor kronotskyensis and chemolithoautotrophic Cupriavidus necator for converting rice straw and CO
    Peng X; Kelly RM; Han Y
    Biotechnol Bioeng; 2018 Jun; 115(6):1624-1629. PubMed ID: 29476619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies.
    Horvat P; Koller M; Braunegg G
    World J Microbiol Biotechnol; 2015 Sep; 31(9):1315-28. PubMed ID: 26066363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathway analysis of a recombinant yeast for rational strain development.
    Carlson R; Fell D; Srienc F
    Biotechnol Bioeng; 2002 Jul; 79(2):121-34. PubMed ID: 12115428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.