These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24715540)

  • 1. Uniform decoration of vanadium oxide nanocrystals on reduced graphene-oxide balls by an aerosol process for lithium-ion battery cathode material.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(21):6294-9. PubMed ID: 24715540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries.
    Park GD; Choi SH; Lee JK; Kang YC
    Chemistry; 2014 Sep; 20(38):12183-9. PubMed ID: 25111441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superior lithium-ion storage properties of si-based composite powders with unique Si@carbon@void@graphene configuration.
    Choi SH; Jung DS; Choi JW; Kang YC
    Chemistry; 2015 Jan; 21(5):2076-82. PubMed ID: 25450157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical properties of tin oxide flake/reduced graphene oxide/carbon composite powders as anode materials for lithium-ion batteries.
    Lee SM; Choi SH; Kang YC
    Chemistry; 2014 Nov; 20(46):15203-7. PubMed ID: 25266199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.
    Park GD; Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16842-9. PubMed ID: 26186601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries.
    Choi SH; Ko YN; Lee JK; Kang YC
    Sci Rep; 2014 Aug; 4():5786. PubMed ID: 25167932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical properties of hollow-structured MnS-carbon nanocomposite powders prepared by a one-pot spray pyrolysis process.
    Lee SM; Lee JK; Kang YC
    Chem Asian J; 2014 Feb; 9(2):590-5. PubMed ID: 24265162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy for synthesizing yolk-shell V₂O₅ powders with low melting temperature for high performance Li-ion batteries.
    Ko YN; Chan Kang Y; Park SB
    Nanoscale; 2013 Oct; 5(19):8899-903. PubMed ID: 23917375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.
    Choi SH; Jung KY; Kang YC
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13952-9. PubMed ID: 26047208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries.
    Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18894-900. PubMed ID: 25296182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic compositional and morphological effects for improved Na⁺ storage properties of Ni₃Co₆S₈-reduced graphene oxide composite powders.
    Choi SH; Kang YC
    Nanoscale; 2015 Apr; 7(14):6230-7. PubMed ID: 25779096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior Lithium-Ion Storage Properties of Mesoporous CuO-Reduced Graphene Oxide Composite Powder Prepared by a Two-Step Spray-Drying Process.
    Park GD; Kang YC
    Chemistry; 2015 Jun; 21(25):9179-84. PubMed ID: 25974372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroporous Fe3O4/carbon composite microspheres with a short Li+ diffusion pathway for the fast charge/discharge of lithium ion batteries.
    Choi SH; Ko YN; Jung KY; Kang YC
    Chemistry; 2014 Aug; 20(35):11078-83. PubMed ID: 25059480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries.
    Zhou X; Wu G; Wu J; Yang H; Wang J; Gao G
    Phys Chem Chem Phys; 2014 Mar; 16(9):3973-82. PubMed ID: 24445581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-ion Storage Performances of FeSe(x) and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process.
    Park GD; Cho JS; Lee JK; Kang YC
    Sci Rep; 2016 Feb; 6():22432. PubMed ID: 26928312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-Ion Storage Properties of FeS-Reduced Graphene Oxide Composite Powder with a Crumpled Structure.
    Lee SY; Kang YC
    Chemistry; 2016 Feb; 22(8):2769-74. PubMed ID: 26789137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries.
    Zhang Y; Yuan X; Lu T; Gong Z; Pan L; Guo S
    J Colloid Interface Sci; 2021 Mar; 585():347-354. PubMed ID: 33302051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Sandwich-like Vanadium Oxide/Graphene Mesoporous Composite as High-Capacity Anode Material for Lithium Ion Batteries.
    Wang X; Huang Y; Jia D; Pang WK; Guo Z; Du Y; Tang X; Cao Y
    Inorg Chem; 2015 Dec; 54(24):11799-806. PubMed ID: 26650604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.