These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2471621)

  • 1. The cortical distribution of muscle and cutaneous afferent projections from the human foot.
    Macefield G; Burke D; Gandevia SC
    Electroencephalogr Clin Neurophysiol; 1989 Jun; 72(6):518-28. PubMed ID: 2471621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfering cutaneous stimulation and the muscle afferent contribution to cortical potentials.
    Burke D; Gandevia SC
    Electroencephalogr Clin Neurophysiol; 1988 Aug; 70(2):118-25. PubMed ID: 2456190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the size of a muscle afferent volley and the cerebral potential it produces.
    Gandevia S; Burke D; McKeon B
    J Neurol Neurosurg Psychiatry; 1982 Aug; 45(8):705-10. PubMed ID: 6290605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between cutaneous and muscle afferent projections to cerebral cortex in man.
    Burke D; Gandevia SC; McKeon B; Skuse NF
    Electroencephalogr Clin Neurophysiol; 1982 Apr; 53(4):349-60. PubMed ID: 6175498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in muscle and cutaneous cerebral potentials during standing.
    Applegate C; Gandevia SC; Burke D
    Exp Brain Res; 1988; 71(1):183-8. PubMed ID: 3416949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflex responses in active muscles elicited by stimulation of low-threshold afferents from the human foot.
    Aniss AM; Gandevia SC; Burke D
    J Neurophysiol; 1992 May; 67(5):1375-84. PubMed ID: 1597720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man.
    Nielsen J; Petersen N; Fedirchuk B
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):473-84. PubMed ID: 9192318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The afferent volleys responsible for spinal proprioceptive reflexes in man.
    Burke D; Gandevia SC; McKeon B
    J Physiol; 1983 Jun; 339():535-52. PubMed ID: 6887033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue of neuronal function by cross-regeneration of cutaneous afferents into muscle in cats.
    Nishimura H; Johnson RD; Munson JB
    J Neurophysiol; 1993 Jul; 70(1):213-22. PubMed ID: 8395575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conduction properties of epidurally recorded spinal cord potentials following lower limb stimulation in man.
    Halonen JP; Jones SJ; Edgar MA; Ransford AO
    Electroencephalogr Clin Neurophysiol; 1989; 74(3):161-74. PubMed ID: 2470572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects.
    Macefield G; Gandevia SC; Burke D
    Brain; 1989 Dec; 112 ( Pt 6)():1519-32. PubMed ID: 2597994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for restricted central convergence of cutaneous afferents on an excitatory reflex pathway to medial gastrocnemius motoneurons.
    LaBella LA; McCrea DA
    J Neurophysiol; 1990 Aug; 64(2):403-12. PubMed ID: 2213124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cutaneous afferent signal as a modulator of the heteronymous effect of primary muscle afferents].
    PleshchinskiÄ­ IN; Bikmullina RKh; Shamshurina NA; Iskhakova RIu
    Fiziol Cheloveka; 2001; 27(6):63-70. PubMed ID: 11771266
    [No Abstract]   [Full Text] [Related]  

  • 14. Topographic analyses of somatosensory evoked potentials following stimulation of tibial, sural and lateral femoral cutaneous nerves.
    Yamada T; Matsubara M; Shiraishi G; Yeh M; Kawasaki M
    Electroencephalogr Clin Neurophysiol; 1996 Jan; 100(1):33-43. PubMed ID: 8964261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord.
    Knikou M; Kay E; Schmit BD
    Exp Neurol; 2007 Jul; 206(1):146-58. PubMed ID: 17543951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projection of low-threshold afferents from human intercostal muscles to the cerebral cortex.
    Gandevia SC; Macefield G
    Respir Physiol; 1989 Aug; 77(2):203-14. PubMed ID: 2781163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microneurography from the posterior tibial nerve: a novel method of recording activity from the foot in freely standing humans.
    Knellwolf TP; Burton AR; Hammam E; Macefield VG
    J Neurophysiol; 2018 Sep; 120(3):953-959. PubMed ID: 29873616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection to cerebral cortex of group I muscle afferents from the cat's hind limb.
    Landgren S; Silfvenius H
    J Physiol; 1969 Feb; 200(2):353-72. PubMed ID: 5764405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed depolarization and slow sodium currents in cutaneous afferents.
    Honmou O; Utzschneider DA; Rizzo MA; Bowe CM; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 May; 71(5):1627-37. PubMed ID: 8064338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflex activation of muscle spindles in human pretibial muscles during standing.
    Aniss AM; Diener HC; Hore J; Burke D; Gandevia SC
    J Neurophysiol; 1990 Aug; 64(2):671-9. PubMed ID: 2213139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.