BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24716841)

  • 1. Dicistronic expression of human proinsulin-protein A fusion in tobacco chloroplast.
    Yarbakht M; Jalali-Javaran M; Nikkhah M; Mohebodini M
    Biotechnol Appl Biochem; 2015; 62(1):55-63. PubMed ID: 24716841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide.
    Boyhan D; Daniell H
    Plant Biotechnol J; 2011 Jun; 9(5):585-98. PubMed ID: 21143365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Introduction of Plasmodium falciparum C-terminal region of the merozoite surface protein gene into the chloroplast of tobacco].
    Chen Q; Liang WQ; Qian BJ; Shen HF; Cao JP; Xu YX; Zhang DB; Tang LH
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2008 Aug; 26(4):263-7. PubMed ID: 24818366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastid transformation as an expression tool for plant-derived biopharmaceuticals.
    Scotti N; Cardi T
    Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporary Immersion Bioreactors for the Contained Production of Recombinant Proteins in Transplastomic Plants.
    Barretto S; Michoux F; Nixon PJ
    Methods Mol Biol; 2016; 1385():149-60. PubMed ID: 26614288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protocol for expression of foreign genes in chloroplasts.
    Verma D; Samson NP; Koya V; Daniell H
    Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise excision of plastid DNA by the large serine recombinase Bxb1.
    Shao M; Kumar S; Thomson JG
    Plant Biotechnol J; 2014 Apr; 12(3):322-9. PubMed ID: 24261912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the truncated tissue plasminogen activator (K2S) gene in tobacco chloroplast.
    Abdoli-Nasab M; Jalali-Javaran M; Cusidó RM; Palazón J; Baghizadeh A; Alizadeh H
    Mol Biol Rep; 2013 Oct; 40(10):5749-58. PubMed ID: 24114696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome.
    Elghabi Z; Karcher D; Zhou F; Ruf S; Bock R
    Plant Biotechnol J; 2011 Jun; 9(5):599-608. PubMed ID: 21309998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco.
    Ziegelhoffer T; Raasch JA; Austin-Phillips S
    Plant Biotechnol J; 2009 Aug; 7(6):527-36. PubMed ID: 19500296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.
    Gottschamel J; Lössl A; Ruf S; Wang Y; Skaugen M; Bock R; Clarke JL
    Plant Mol Biol; 2016 Jul; 91(4-5):497-512. PubMed ID: 27116001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes.
    Fumagalli M; Gerace D; Faè M; Iadarola P; Leelavathi S; Reddy VS; Cella R
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9479-9491. PubMed ID: 31701198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.
    De Marchis F; Bellucci M; Pompa A
    Plant Biotechnol J; 2016 Feb; 14(2):603-14. PubMed ID: 26031839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of hEGF and hEGF-fusion proteins in chloroplast-transformed tobacco plants is higher in the dark than in the light.
    Wirth S; Segretin ME; Mentaberry A; Bravo-Almonacid F
    J Biotechnol; 2006 Sep; 125(2):159-72. PubMed ID: 16584796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable Expression of Basic Fibroblast Growth Factor in Chloroplasts of Tobacco.
    Wang YP; Wei ZY; Zhong XF; Lin CJ; Cai YH; Ma J; Zhang YY; Liu YZ; Xing SC
    Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26703590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions.
    Gray BN; Ahner BA; Hanson MR
    Biotechnol Bioeng; 2009 Mar; 102(4):1045-54. PubMed ID: 18973281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
    Daniell H
    Biotechnol J; 2006 Oct; 1(10):1071-9. PubMed ID: 17004305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer.
    Soria-Guerra RE; Alpuche-Solís AG; Rosales-Mendoza S; Moreno-Fierros L; Bendik EM; Martínez-González L; Korban SS
    Planta; 2009 May; 229(6):1293-302. PubMed ID: 19306020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites.
    Legen J; Ruf S; Kroop X; Wang G; Barkan A; Bock R; Schmitz-Linneweber C
    Plant J; 2018 Apr; 94(1):8-21. PubMed ID: 29418028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.