These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24716858)

  • 1. Programmable pH-triggered DNA nanoswitches.
    Idili A; Vallée-Bélisle A; Ricci F
    J Am Chem Soc; 2014 Apr; 136(16):5836-9. PubMed ID: 24716858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures.
    Idili A; Ricci F
    Methods Mol Biol; 2018; 1811():79-100. PubMed ID: 29926447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of pH-controlled DNA strand displacement.
    Amodio A; Zhao B; Porchetta A; Idili A; Castronovo M; Fan C; Ricci F
    J Am Chem Soc; 2014 Nov; 136(47):16469-72. PubMed ID: 25369216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices.
    Halder S; Krishnan Y
    Nanoscale; 2015 Jun; 7(22):10008-12. PubMed ID: 25990365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA logic assembly powered by a triplex-helix molecular switch for extracellular pH imaging.
    Qi H; Yue S; Bi S; Ding C; Song W
    Chem Commun (Camb); 2018 Jul; 54(61):8498-8501. PubMed ID: 30003199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method to map spatiotemporal pH changes inside living cells using a pH-triggered DNA nanoswitch.
    Modi S; Krishnan Y
    Methods Mol Biol; 2011; 749():61-77. PubMed ID: 21674365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding-upon-Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes.
    Farag N; Mattossovich R; Merlo R; Nierzwicki Ł; Palermo G; Porchetta A; Perugino G; Ricci F
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):7283-7289. PubMed ID: 33415794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches.
    Kolaric B; Sliwa M; Brucale M; Vallée RA; Zuccheri G; Samori B; Hofkens J; De Schryver FC
    Photochem Photobiol Sci; 2007 Jun; 6(6):614-8. PubMed ID: 17549262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches.
    Patino T; Porchetta A; Jannasch A; Lladó A; Stumpp T; Schäffer E; Ricci F; Sánchez S
    Nano Lett; 2019 Jun; 19(6):3440-3447. PubMed ID: 30704240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable DNA Nanoswitches for Graphical Readout of Molecular Signals.
    Chandrasekaran AR
    Chembiochem; 2018 May; 19(10):1018-1021. PubMed ID: 29573073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanotechnology based on i-motif structures.
    Dong Y; Yang Z; Liu D
    Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell Surface-Anchored DNA Nanomachine for Dynamically Tunable Sensing and Imaging of Extracellular pH.
    Liu L; Dou CX; Liu JW; Wang XN; Ying ZM; Jiang JH
    Anal Chem; 2018 Oct; 90(19):11198-11202. PubMed ID: 30189727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.
    Idili A; Plaxco KW; Vallée-Bélisle A; Ricci F
    ACS Nano; 2013 Dec; 7(12):10863-9. PubMed ID: 24219761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonal Control of DNA Nanoswitches with Mixed Physical and Biochemical Cues.
    Forrest NT; Vilcapoma J; Alejos K; Halvorsen K; Chandrasekaran AR
    Biochemistry; 2021 Feb; 60(4):250-253. PubMed ID: 33464826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanoarchitectures: steps towards biological applications.
    Tintoré M; Eritja R; Fábrega C
    Chembiochem; 2014 Jul; 15(10):1374-90. PubMed ID: 24953971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex DNA Nanostructures: From Basic Properties to Applications.
    Hu Y; Cecconello A; Idili A; Ricci F; Willner I
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15210-15233. PubMed ID: 28444822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Nanostructures as Programmable Biomolecular Scaffolds.
    Yang YR; Liu Y; Yan H
    Bioconjug Chem; 2015 Aug; 26(8):1381-95. PubMed ID: 25961418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal pH-Responsive and Metal-Ion-Free Self-Assembly of DNA Nanostructures.
    Li Y; Song L; Wang B; He J; Li Y; Deng Z; Mao C
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6892-6895. PubMed ID: 29683548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of triplex DNA nanostructures in sensor development.
    Lin PY; Chi R; Wu YL; Ho JA
    Anal Bioanal Chem; 2022 Jul; 414(18):5217-5237. PubMed ID: 35469098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical approaches to DNA nanotechnology.
    Endo M; Sugiyama H
    Chembiochem; 2009 Oct; 10(15):2420-43. PubMed ID: 19714700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.