BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24717103)

  • 1. In situ X-ray diffraction study of the formation, growth, and phase transition of colloidal Cu(2-x)S nanocrystals.
    Nørby P; Johnsen S; Iversen BB
    ACS Nano; 2014 May; 8(5):4295-303. PubMed ID: 24717103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals.
    Tang A; Qu S; Li K; Hou Y; Teng F; Cao J; Wang Y; Wang Z
    Nanotechnology; 2010 Jul; 21(28):285602. PubMed ID: 20562487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and assembly of monodisperse spherical Cu2S nanocrystals.
    Li S; Wang H; Xu W; Si H; Tao X; Lou S; Du Z; Li LS
    J Colloid Interface Sci; 2009 Feb; 330(2):483-7. PubMed ID: 19007936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties.
    Quintana-Ramirez PV; Arenas-Arrocena MC; Santos-Cruz J; Vega-González M; Martínez-Alvarez O; Castaño-Meneses VM; Acosta-Torres LS; de la Fuente-Hernández J
    Beilstein J Nanotechnol; 2014; 5():1542-52. PubMed ID: 25247136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S).
    Leidinger P; Popescu R; Gerthsen D; Lünsdorf H; Feldmann C
    Nanoscale; 2011 Jun; 3(6):2544-51. PubMed ID: 21556411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor.
    Larsen TH; Sigman M; Ghezelbash A; Doty RC; Korgel BA
    J Am Chem Soc; 2003 May; 125(19):5638-9. PubMed ID: 12733895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc oxide nanocrystals stabilized by alkylammonium alkylcarbamates.
    Luo B; Rossini JE; Gladfelter WL
    Langmuir; 2009 Nov; 25(22):13133-41. PubMed ID: 19678673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism.
    Ghezelbash A; Korgel BA
    Langmuir; 2005 Oct; 21(21):9451-6. PubMed ID: 16207021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal synthesis of magnetic CuCr2S4 nanocrystals and nanoclusters.
    Ramasamy K; Mazumdar D; Zhou Z; Wang YH; Gupta A
    J Am Chem Soc; 2011 Dec; 133(51):20716-9. PubMed ID: 22126401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.
    Han W; Yi L; Zhao N; Tang A; Gao M; Tang Z
    J Am Chem Soc; 2008 Oct; 130(39):13152-61. PubMed ID: 18774814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Luminescent Zn(x)Cd(1-x)Se/C Core/Shell Nanocrystals: Large Scale Synthesis, Structural and Cathodoluminescence Studies.
    Bhattacharyya S; Estrin Y; Moshe O; Rich DH; Solovyov LA; Gedanken A
    ACS Nano; 2009 Jul; 3(7):1864-76. PubMed ID: 19572618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis and optical property of copper(I) sulfide nanodisks.
    Wang Y; Hu Y; Zhang Q; Ge J; Lu Z; Hou Y; Yin Y
    Inorg Chem; 2010 Jul; 49(14):6601-8. PubMed ID: 20575563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High chalcocite Cu2S: a solid-liquid hybrid phase.
    Wang LW
    Phys Rev Lett; 2012 Feb; 108(8):085703. PubMed ID: 22463544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphine-Induced Phase Transition in Copper Sulfide Nanoparticles Prior to Initiation of a Cation Exchange Reaction.
    Steimle BC; Lord RW; Schaak RE
    J Am Chem Soc; 2020 Aug; 142(31):13345-13349. PubMed ID: 32700901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural evolution of a colloidal crystal fiber during heating and annealing studied by in situ synchrotron small angle X-ray scattering.
    Hu S; Rieger J; Yi Z; Zhang J; Chen X; Roth SV; Gehrke R; Men Y
    Langmuir; 2010 Aug; 26(16):13216-20. PubMed ID: 20695561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EuS nanocrystals: a novel synthesis for the generation of monodisperse nanocrystals with size-dependent optical properties.
    Koktysh DS; Somarajan S; He W; Harrison MA; McGill SA; Dickerson JH
    Nanotechnology; 2010 Oct; 21(41):415601. PubMed ID: 20834117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two new colloidal crystal phases of lipid A-monophosphate: order-to-order transition in colloidal crystals.
    Faunce CA; Paradies HH
    J Chem Phys; 2009 Dec; 131(24):244708. PubMed ID: 20059100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary Cu
    Yarur Villanueva F; Green PB; Qiu C; Ullah SR; Buenviaje K; Howe JY; Majewski MB; Wilson MWB
    ACS Nano; 2021 Nov; 15(11):18085-18099. PubMed ID: 34705409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.