These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24717350)

  • 1. Motor cortical control of movement speed with implications for brain-machine interface control.
    Golub MD; Yu BM; Schwartz AB; Chase SM
    J Neurophysiol; 2014 Jul; 112(2):411-29. PubMed ID: 24717350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control of finger movement via intracortical brain-machine interface.
    Irwin ZT; Schroeder KE; Vu PP; Bullard AJ; Tat DM; Nu CS; Vaskov A; Nason SR; Thompson DE; Bentley JN; Patil PG; Chestek CA
    J Neural Eng; 2017 Dec; 14(6):066004. PubMed ID: 28722685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements.
    Stavisky SD; Kao JC; Nuyujukian P; Pandarinath C; Blabe C; Ryu SI; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2018 Nov; 8(1):16357. PubMed ID: 30397281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Stability of Motor Cortical Activity: Implications for Brain Machine Interfaces and Optimal Feedback Control.
    Flint RD; Scheid MR; Wright ZA; Solla SA; Slutzky MW
    J Neurosci; 2016 Mar; 36(12):3623-32. PubMed ID: 27013690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagating spatiotemporal activity patterns across macaque motor cortex carry kinematic information.
    Liang W; Balasubramanian K; Papadourakis V; Hatsopoulos NG
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2212227120. PubMed ID: 36652475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High accuracy decoding of movement target direction in non-human primates based on common spatial patterns of local field potentials.
    Ince NF; Gupta R; Arica S; Tewfik AH; Ashe J; Pellizzer G
    PLoS One; 2010 Dec; 5(12):e14384. PubMed ID: 21200434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonalizing the Activity of Two Neural Units for 2D Cursor Movement Control.
    Zheng Q; Zhang Y; Wan Z; Malik WQ; Chen W; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3046-3049. PubMed ID: 33018647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.
    Xu Z; So RQ; Toe KK; Ang KK; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3049-52. PubMed ID: 25570634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
    So K; Ganguly K; Jimenez J; Gastpar MC; Carmena JM
    J Comput Neurosci; 2012 Jun; 32(3):555-61. PubMed ID: 22042443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.