BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 24717646)

  • 1. 3D printing facilitated scaffold-free tissue unit fabrication.
    Tan Y; Richards DJ; Trusk TC; Visconti RP; Yost MJ; Kindy MS; Drake CJ; Argraves WS; Markwald RR; Mei Y
    Biofabrication; 2014 Jun; 6(2):024111. PubMed ID: 24717646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.
    Tabriz AG; Hermida MA; Leslie NR; Shu W
    Biofabrication; 2015 Dec; 7(4):045012. PubMed ID: 26689257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of Alginate-Based Bioinks in 3D Bioprinting.
    Axpe E; Oyen ML
    Int J Mol Sci; 2016 Nov; 17(12):. PubMed ID: 27898010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink.
    Colosi C; Shin SR; Manoharan V; Massa S; Costantini M; Barbetta A; Dokmeci MR; Dentini M; Khademhosseini A
    Adv Mater; 2016 Jan; 28(4):677-84. PubMed ID: 26606883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioprintable form of chitosan hydrogel for bone tissue engineering.
    Demirtaş TT; Irmak G; Gümüşderelioğlu M
    Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.
    Park J; Lee SJ; Chung S; Lee JH; Kim WD; Lee JY; Park SA
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():678-684. PubMed ID: 27987760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.