These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 24717651)
1. Surface tension gradient around an alcohol droplet moving spontaneously on a water surface. Oshima S; Nomoto T; Toyota T; Fujinami M Anal Sci; 2014; 30(4):441-4. PubMed ID: 24717651 [TBL] [Abstract][Full Text] [Related]
2. Flow-Driven Self-Propulsion of Oil Droplet on a Surfactant Solution Surface, as Observed by Time-Resolved Interfacial Tension and Surface Flow Speed Measurements. Nomoto T; Kimura H; Chiari L; Toyota T; Fujinami M Langmuir; 2024 Feb; 40(8):4468-4474. PubMed ID: 38363648 [TBL] [Abstract][Full Text] [Related]
3. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface. Watahiki Y; Nomoto T; Chiari L; Toyota T; Fujinami M Langmuir; 2018 May; 34(19):5487-5494. PubMed ID: 29693399 [TBL] [Abstract][Full Text] [Related]
4. Regular self-motion of a liquid droplet powered by the chemical marangoni effect. Nagai K; Sumino Y; Yoshikawa K Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535 [TBL] [Abstract][Full Text] [Related]
5. Quasi-elastic laser scattering for measuring inhomogeneous interfacial tension in non-equilibrium phenomena with convective flows. Nomoto T; Toyota T; Fujinami M Anal Sci; 2014; 30(7):707-16. PubMed ID: 25007928 [TBL] [Abstract][Full Text] [Related]
6. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet. Suematsu NJ; Saikusa K; Nagata T; Izumi S Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577 [TBL] [Abstract][Full Text] [Related]
7. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution. Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858 [TBL] [Abstract][Full Text] [Related]
8. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method. Nomoto T; Marumo M; Chiari L; Toyota T; Fujinami M J Phys Chem B; 2023 Mar; 127(12):2863-2871. PubMed ID: 36921258 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous Oscillations and Synchronization of Active Droplets on a Water Surface via Marangoni Convection. Chen YJ; Sadakane K; Sakuta H; Yao C; Yoshikawa K Langmuir; 2017 Oct; 33(43):12362-12368. PubMed ID: 28991482 [TBL] [Abstract][Full Text] [Related]
10. Start of Micrometer-Sized Oil Droplet Motion through Generation of Surfactants. Kasuo Y; Kitahata H; Koyano Y; Takinoue M; Asakura K; Banno T Langmuir; 2019 Oct; 35(41):13351-13355. PubMed ID: 31550892 [TBL] [Abstract][Full Text] [Related]
11. Droplet motion with phase change in a temperature gradient. Onuki A; Kanatani K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066304. PubMed ID: 16486056 [TBL] [Abstract][Full Text] [Related]
12. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Yoshinaga N; Nagai KH; Sumino Y; Kitahata H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016108. PubMed ID: 23005492 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved quasi-elastic laser scattering study demonstrating heterogeneity of interfacial tension at the water/nitrobenzene interface after introduction of sodium alkylsulfate. Toyota T; Kimura T; Miyoshi K; Fujinami M J Colloid Interface Sci; 2010 Sep; 349(2):632-6. PubMed ID: 20573355 [TBL] [Abstract][Full Text] [Related]
14. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
15. Rotational motion of a droplet induced by interfacial tension. Nagai KH; Takabatake F; Sumino Y; Kitahata H; Ichikawa M; Yoshinaga N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013009. PubMed ID: 23410428 [TBL] [Abstract][Full Text] [Related]
16. Dual Marangoni effects and detection of traces of surfactants. Arangalage M; Li X; Lequeux F; Talini L Soft Matter; 2018 May; 14(17):3378-3386. PubMed ID: 29666862 [TBL] [Abstract][Full Text] [Related]
17. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow. Muto M; Yamamoto M; Motosuke M Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705 [TBL] [Abstract][Full Text] [Related]
18. Interface dynamics under nonequilibrium conditions: from a self-propelled droplet to dynamic pattern evolution. Chen YJ; Yoshikawa K Eur Phys J E Soft Matter; 2011 Apr; 34(4):38. PubMed ID: 21509663 [TBL] [Abstract][Full Text] [Related]
19. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
20. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates. Sommers AD; Brest TJ; Eid KF Langmuir; 2013 Sep; 29(38):12043-50. PubMed ID: 23971937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]