These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24717682)

  • 1. Universal dispersion of surface plasmons in flat nanostructures.
    Schmidt FP; Ditlbacher H; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Nat Commun; 2014 Apr; 5():3604. PubMed ID: 24717682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks.
    Yang Y; Hobbs RG; Keathley PD; Berggren KK
    Opt Express; 2020 Sep; 28(19):27405-27414. PubMed ID: 32988035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dark plasmonic breathing modes in silver nanodisks.
    Schmidt FP; Ditlbacher H; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Nano Lett; 2012 Nov; 12(11):5780-3. PubMed ID: 23025804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic modes confined in nanoscale thin silver films deposited onto metallic substrates.
    Politano A; Formoso V; Chiarello G
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1313-21. PubMed ID: 20352793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in multi-dimensional coherent spectroscopy of semiconductor nanostructures.
    Moody G; Cundiff ST
    Adv Phys X; 2017; 2(3):641-674. PubMed ID: 28894306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of Elementary Electronic Excitations: Drawing Parallels Between Excitons and Plasmons.
    Thomas R; Kumar J; George J; Shanthil M; Naidu GN; Swathi RS; Thomas KG
    J Phys Chem Lett; 2018 Feb; 9(4):919-932. PubMed ID: 29394070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.
    Jiang R; Li B; Fang C; Wang J
    Adv Mater; 2014 Aug; 26(31):5274-309. PubMed ID: 24753398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmons in nanoscale and atomic-scale systems.
    Nagao T; Han G; Hoang C; Wi JS; Pucci A; Weber D; Neubrech F; Silkin VM; Enders D; Saito O; Rana M
    Sci Technol Adv Mater; 2010 Oct; 11(5):054506. PubMed ID: 27877363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
    Nelayah J; Kociak M; Stéphan O; Geuquet N; Henrard L; García de Abajo FJ; Pastoriza-Santos I; Liz-Marzán LM; Colliex C
    Nano Lett; 2010 Mar; 10(3):902-7. PubMed ID: 20163134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires.
    Wild B; Cao L; Sun Y; Khanal BP; Zubarev ER; Gray SK; Scherer NF; Pelton M
    ACS Nano; 2012 Jan; 6(1):472-82. PubMed ID: 22185403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.
    Hobbs RG; Manfrinato VR; Yang Y; Goodman SA; Zhang L; Stach EA; Berggren KK
    Nano Lett; 2016 Jul; 16(7):4149-57. PubMed ID: 27295061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physics and engineering of peptide supramolecular nanostructures.
    Handelman A; Beker P; Amdursky N; Rosenman G
    Phys Chem Chem Phys; 2012 May; 14(18):6391-408. PubMed ID: 22460950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum plexcitonics: strongly interacting plasmons and excitons.
    Manjavacas A; García de Abajo FJ; Nordlander P
    Nano Lett; 2011 Jun; 11(6):2318-23. PubMed ID: 21534592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures.
    Najmaei S; Mlayah A; Arbouet A; Girard C; Léotin J; Lou J
    ACS Nano; 2014 Dec; 8(12):12682-9. PubMed ID: 25469686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots.
    Gong J; Steinsultz N; Ouyang M
    Nat Commun; 2016 Jun; 7():11820. PubMed ID: 27273426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.
    Dahlin AB; Zahn R; Vörös J
    Nanoscale; 2012 Apr; 4(7):2339-51. PubMed ID: 22374047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.