BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24718049)

  • 1. Daily rhythm of synapse turnover in mouse somatosensory cortex.
    Jasinska M; Grzegorczyk A; Jasek E; Litwin JA; Kossut M; Barbacka-Surowiak G; Pyza E
    Acta Neurobiol Exp (Wars); 2014; 74(1):104-10. PubMed ID: 24718049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian rhythmicity of synapses in mouse somatosensory cortex.
    Jasinska M; Grzegorczyk A; Woznicka O; Jasek E; Kossut M; Barbacka-Surowiak G; Litwin JA; Pyza E
    Eur J Neurosci; 2015 Oct; 42(8):2585-94. PubMed ID: 26274013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian Changes of Dendritic Spine Geometry in Mouse Barrel Cortex.
    Jasinska M; Woznicka O; Jasek-Gajda E; Lis GJ; Pyza E; Litwin JA
    Front Neurosci; 2020; 14():578881. PubMed ID: 33117123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse.
    Jasińska M; Siucińska E; Głazewski S; Pyza E; Kossut M
    Acta Neurobiol Exp (Wars); 2006; 66(2):99-104. PubMed ID: 16886719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fear learning increases the number of polyribosomes associated with excitatory and inhibitory synapses in the barrel cortex.
    Jasinska M; Siucinska E; Jasek E; Litwin JA; Pyza E; Kossut M
    PLoS One; 2013; 8(2):e54301. PubMed ID: 23457448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clock regulates the shape and content of dendritic spines in mouse barrel cortex.
    Jasinska M; Jasek-Gajda E; Woznicka O; Lis GJ; Pyza E; Litwin JA
    PLoS One; 2019; 14(11):e0225394. PubMed ID: 31730670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex.
    Jasinska M; Siucinska E; Jasek E; Litwin JA; Pyza E; Kossut M
    Neural Plast; 2016; 2016():9828517. PubMed ID: 26819780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of long-term sensory deprivation on asymmetric synapses in the whisker barrel field of the adult rat.
    Machín R; Pérez-Cejuela CG; Bjugn R; Avendaño C
    Brain Res; 2006 Aug; 1107(1):104-10. PubMed ID: 16822483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice.
    Knott GW; Quairiaux C; Genoud C; Welker E
    Neuron; 2002 Apr; 34(2):265-73. PubMed ID: 11970868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synapse formation in adult barrel cortex following naturalistic environmental enrichment.
    Landers MS; Knott GW; Lipp HP; Poletaeva I; Welker E
    Neuroscience; 2011 Dec; 199():143-52. PubMed ID: 22061424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral whisker trimming during early postnatal life impairs dendritic spine development in the mouse somatosensory barrel cortex.
    Briner A; De Roo M; Dayer A; Muller D; Kiss JZ; Vutskits L
    J Comp Neurol; 2010 May; 518(10):1711-23. PubMed ID: 20235164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mouse barrel synapses consequent to sensory deprivation from birth.
    Sadaka Y; Weinfeld E; Lev DL; White EL
    J Comp Neurol; 2003 Feb; 457(1):75-86. PubMed ID: 12541326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of development and sensory deprivation on dendritic protrusions in the mouse barrel cortex.
    Chen CC; Bajnath A; Brumberg JC
    Cereb Cortex; 2015 Jun; 25(6):1638-53. PubMed ID: 24408954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CREB Regulates Experience-Dependent Spine Formation and Enlargement in Mouse Barrel Cortex.
    Pignataro A; Borreca A; Ammassari-Teule M; Middei S
    Neural Plast; 2015; 2015():651469. PubMed ID: 26075101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained Enhancement of Lateral Inhibitory Circuit Maintains Cross Modal Cortical Reorganization.
    Nakajima W; Jitsuki S; Sano A; Takahashi T
    PLoS One; 2016; 11(2):e0149068. PubMed ID: 26863615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid adult experience-dependent anatomical plasticity in layer IV of primary somatosensory cortex.
    Chau LS; Akhtar O; Mohan V; Kondilis A; Galvez R
    Brain Res; 2014 Jan; 1543():93-100. PubMed ID: 24183785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatosensory and visual deprivation each decrease the density of parvalbumin neurons and their synapse terminals in the prefrontal cortex and hippocampus of mice.
    Ueno H; Shoshi C; Suemitsu S; Usui S; Sujiura H; Okamoto M
    Acta Med Okayama; 2013; 67(3):135-43. PubMed ID: 23804136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Area-Specific Synapse Structure in Branched Posterior Nucleus Axons Reveals a New Level of Complexity in Thalamocortical Networks.
    Rodriguez-Moreno J; Porrero C; Rollenhagen A; Rubio-Teves M; Casas-Torremocha D; Alonso-Nanclares L; Yakoubi R; Santuy A; Merchan-Pérez A; DeFelipe J; Lübke JHR; Clasca F
    J Neurosci; 2020 Mar; 40(13):2663-2679. PubMed ID: 32054677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume electron microscopy of the distribution of synapses in the neuropil of the juvenile rat somatosensory cortex.
    Santuy A; Rodriguez JR; DeFelipe J; Merchan-Perez A
    Brain Struct Funct; 2018 Jan; 223(1):77-90. PubMed ID: 28721455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered synapse formation in the adult somatosensory cortex of brain-derived neurotrophic factor heterozygote mice.
    Genoud C; Knott GW; Sakata K; Lu B; Welker E
    J Neurosci; 2004 Mar; 24(10):2394-400. PubMed ID: 15014114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.