These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 24718141)

  • 1. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.
    Fox OJ; Alianelli L; Malik AM; Pape I; May PW; Sawhney KJ
    Opt Express; 2014 Apr; 22(7):7657-68. PubMed ID: 24718141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diamond nanofocusing refractive X-ray lenses made by planar etching technology.
    Lyubomirskiy M; Boye P; Feldkamp JM; Patommel J; Schoeder S; Schropp A; Burghammer M; Wild C; Schroer CG
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1554-1557. PubMed ID: 31490143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.
    Antipov S; Baryshev SV; Butler JE; Antipova O; Liu Z; Stoupin S
    J Synchrotron Radiat; 2016 Jan; 23(1):163-8. PubMed ID: 26698059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources.
    Terentyev S; Polikarpov M; Snigireva I; Di Michiel M; Zholudev S; Yunkin V; Kuznetsov S; Blank V; Snigirev A
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):103-109. PubMed ID: 28009551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-energy X-ray optics with silicon saw-tooth refractive lenses.
    Shastri SD; Almer J; Ribbing C; Cederström B
    J Synchrotron Radiat; 2007 Mar; 14(Pt 2):204-11. PubMed ID: 17317922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized prism-array lenses for hard X-rays.
    Cederström B; Ribbing C; Lundqvist M
    J Synchrotron Radiat; 2005 May; 12(Pt 3):340-4. PubMed ID: 15840919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diamond planar refractive lenses for third- and fourth-generation X-ray sources.
    Nöhammer B; Hoszowska J; Freund AK; David C
    J Synchrotron Radiat; 2003 Mar; 10(Pt 2):168-71. PubMed ID: 12606795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diamond kinoform hard X-ray refractive lenses: design, nanofabrication and testing.
    Isakovic AF; Stein A; Warren JB; Narayanan S; Sprung M; Sandy AR; Evans-Lutterodt K
    J Synchrotron Radiat; 2009 Jan; 16(Pt 1):8-13. PubMed ID: 19096168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compound refractive lenses as prefocusing optics for X-ray FEL radiation.
    Heimann P; MacDonald M; Nagler B; Lee HJ; Galtier E; Arnold B; Xing Z
    J Synchrotron Radiat; 2016 Mar; 23(2):425-9. PubMed ID: 26917128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar refractive lenses made of SiC for high intensity nanofocusing.
    Lyubomirskiy M; Schurink B; Makhotkin IA; Brueckner D; Wittwer F; Kahnt M; Seyrich M; Seiboth F; Bijkerk F; Schroer CG
    Opt Express; 2021 Apr; 29(9):14025-14032. PubMed ID: 33985128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of germanium linear kinoform lenses at Diamond Light Source.
    Alianelli L; Sawhney KJ; Tiwari MK; Dolbnya IP; Stevens R; Jenkins DW; Loader IM; Wilson MC; Malik A
    J Synchrotron Radiat; 2009 May; 16(Pt 3):325-9. PubMed ID: 19395794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory.
    Tancharakorn S; Tanthanuch W; Kamonsutthipaijit N; Wongprachanukul N; Sophon M; Chaichuay S; Uthaisar C; Yimnirun R
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):536-40. PubMed ID: 22713886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Damage investigation on tungsten and diamond diffractive optics at a hard x-ray free-electron laser.
    Uhlén F; Nilsson D; Holmberg A; Hertz HM; Schroer CG; Seiboth F; Patommel J; Meier V; Hoppe R; Schropp A; Lee HJ; Nagler B; Galtier E; Krzywinski J; Sinn H; Vogt U
    Opt Express; 2013 Apr; 21(7):8051-61. PubMed ID: 23571895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray beam monitor made by thin-film CVD single-crystal diamond.
    Marinelli M; Milani E; Prestopino G; Verona C; Verona-Rinati G; Angelone M; Pillon M; Kachkanov V; Tartoni N; Benetti M; Cannatà D; Di Pietrantonio F
    J Synchrotron Radiat; 2012 Nov; 19(Pt 6):1015-20. PubMed ID: 23093764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency nano-focusing kinoform optics for synchrotron radiation.
    Alianelli L; Sawhney KJ; Barrett R; Pape I; Malik A; Wilson MC
    Opt Express; 2011 Jun; 19(12):11120-7. PubMed ID: 21716341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diamond X-ray beam-position monitoring using signal readout at the synchrotron radiofrequency.
    Morse J; Solar B; Graafsma H
    J Synchrotron Radiat; 2010 Jul; 17(4):456-64. PubMed ID: 20567077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the theory of synchrotron radiation nanofocusing with planar compound refractive lenses.
    Kohn VG
    J Synchrotron Radiat; 2022 May; 29(Pt 3):615-621. PubMed ID: 35510994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray harmonics rejection on third-generation synchrotron sources using compound refractive lenses.
    Polikarpov M; Snigireva I; Snigirev A
    J Synchrotron Radiat; 2014 May; 21(Pt 3):484-7. PubMed ID: 24763636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing transmissive diamond gratings as beam splitters for the hard X-ray single-shot spectrometer of the European XFEL.
    Kujala N; Makita M; Liu J; Zozulya A; Sprung M; David C; Grünert J
    J Synchrotron Radiat; 2019 May; 26(Pt 3):708-713. PubMed ID: 31074434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A desktop X-ray monochromator for synchrotron radiation based on refraction in mosaic prism lenses.
    Liu T; Simon R; Batchelor D; Nazmov V; Hagelstein M
    J Synchrotron Radiat; 2012 Mar; 19(Pt 2):191-7. PubMed ID: 22338678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.