These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24718374)

  • 1. β-Thalassemia and Polycythemia vera: targeting chronic stress erythropoiesis.
    Crielaard BJ; Rivella S
    Int J Biochem Cell Biol; 2014 Jun; 51():89-92. PubMed ID: 24718374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia.
    Ramos P; Casu C; Gardenghi S; Breda L; Crielaard BJ; Guy E; Marongiu MF; Gupta R; Levine RL; Abdel-Wahab O; Ebert BL; Van Rooijen N; Ghaffari S; Grady RW; Giardina PJ; Rivella S
    Nat Med; 2013 Apr; 19(4):437-45. PubMed ID: 23502961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera.
    Casu C; Oikonomidou PR; Chen H; Nandi V; Ginzburg Y; Prasad P; Fleming RE; Shah YM; Valore EV; Nemeth E; Ganz T; MacDonald B; Rivella S
    Blood; 2016 Jul; 128(2):265-76. PubMed ID: 27154187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative evaluation of asynchronism of nucleo-cytoplasmatic maturation in the blood marrow cells; granuloblasts in pernicious anemia, polyglobulism, and thalassemia].
    ASTALDI G; GALLO V; SACCHETTI C
    Haematologica; 1952; 36(1):1-7. PubMed ID: 14917316
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxygen and the control of red cell production in primary and secondary polycythemia; effects on the iron turnover patterns with Fe59 as tracer.
    LAWRENCE JH; ELMLINGER PJ; FULTON G
    Cardiologia (Basel); 1952; 21(4):337-46. PubMed ID: 13019789
    [No Abstract]   [Full Text] [Related]  

  • 6. New therapeutic targets in transfusion-dependent and -independent thalassemia.
    Cappellini MD; Motta I
    Hematology Am Soc Hematol Educ Program; 2017 Dec; 2017(1):278-283. PubMed ID: 29222267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study.
    Pasricha SR; Frazer DM; Bowden DK; Anderson GJ
    Blood; 2013 Jul; 122(1):124-33. PubMed ID: 23656728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the erythroblastic island.
    Socolovsky M
    Nat Med; 2013 Apr; 19(4):399-401. PubMed ID: 23558622
    [No Abstract]   [Full Text] [Related]  

  • 9. Iron metabolism and ineffective erythropoiesis in beta-thalassemia mouse models.
    Ramos P; Melchiori L; Gardenghi S; Van-Roijen N; Grady RW; Ginzburg Y; Rivella S
    Ann N Y Acad Sci; 2010 Aug; 1202():24-30. PubMed ID: 20712768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model.
    Garcia-Santos D; Hamdi A; Saxova Z; Fillebeen C; Pantopoulos K; Horvathova M; Ponka P
    Blood; 2018 Jan; 131(2):236-246. PubMed ID: 29180398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism.
    Ginzburg Y; Rivella S
    Blood; 2011 Oct; 118(16):4321-30. PubMed ID: 21768301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A moderate transfusion regimen may reduce iron loading in beta-thalassemia major without producing excessive expansion of erythropoiesis.
    Cazzola M; Borgna-Pignatti C; Locatelli F; Ponchio L; Beguin Y; De Stefano P
    Transfusion; 1997 Feb; 37(2):135-40. PubMed ID: 9051086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anemia, ineffective erythropoiesis, and hepcidin: interacting factors in abnormal iron metabolism leading to iron overload in β-thalassemia.
    Gardenghi S; Grady RW; Rivella S
    Hematol Oncol Clin North Am; 2010 Dec; 24(6):1089-107. PubMed ID: 21075282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Erythron in patients with polycythemia vera during treatment by erythrocytapheresis and bloodletting].
    Gudim VI; Sarycheva TG; Kotel'nikov VM; Melikian AL; Ivanova VS
    Ter Arkh; 1987; 59(6):48-51. PubMed ID: 3629498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera.
    Lutton JD; Levere RD
    Acta Haematol; 1979; 62(2):94-9. PubMed ID: 119408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased CD177 (PRV1) expression in thalassaemia and the underlying erythropoietic activity.
    Zoi K; Terpos E; Zoi C; Loukopoulos D
    Br J Haematol; 2008 Apr; 141(1):100-4. PubMed ID: 18324972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias.
    Camaschella C; Nai A
    Br J Haematol; 2016 Feb; 172(4):512-23. PubMed ID: 26491866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophages and regulation of erythropoiesis.
    Jacobsen RN; Perkins AC; Levesque JP
    Curr Opin Hematol; 2015 May; 22(3):212-9. PubMed ID: 25693142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcytic polycythemia. Frequency of nonthalassemic causes.
    Bessman JD
    JAMA; 1977 Nov; 238(22):2391-2. PubMed ID: 578867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalassemia: pathophysiology of red cell changes.
    Schrier SL
    Annu Rev Med; 1994; 45():211-8. PubMed ID: 8198378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.