These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24718384)

  • 21. An automated retinal imaging method for the early diagnosis of diabetic retinopathy.
    Franklin SW; Rajan SE
    Technol Health Care; 2013; 21(6):557-69. PubMed ID: 24284549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.
    Raja DS; Vasuki S
    Comput Math Methods Med; 2015; 2015():419279. PubMed ID: 25810749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques.
    Gegundez-Arias ME; Marin D; Bravo JM; Suero A
    Comput Med Imaging Graph; 2013; 37(5-6):386-93. PubMed ID: 23838458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and localization of fovea on colour fundus images using blur scales.
    Ganesan K; Acharya RU; Chua CK; Laude A
    Proc Inst Mech Eng H; 2014 Sep; 228(9):962-70. PubMed ID: 25234036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel diagnostic information based framework for super-resolution of retinal fundus images.
    Das V; Dandapat S; Bora PK
    Comput Med Imaging Graph; 2019 Mar; 72():22-33. PubMed ID: 30772075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel edge detection in medical images by fusing of multi-model from different spatial structure clues.
    Jia X; Huang H; Wang R
    Biomed Mater Eng; 2014; 24(1):1289-98. PubMed ID: 24212024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of image quality on color fundus retinal images using the automatic retinal image analysis.
    Shi C; Lee J; Wang G; Dou X; Yuan F; Zee B
    Sci Rep; 2022 Jun; 12(1):10455. PubMed ID: 35729197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated localization of retinal features.
    Sekhar S; Abd El-Samie FE; Yu P; Al-Nuaimy W; Nandi AK
    Appl Opt; 2011 Jul; 50(19):3064-75. PubMed ID: 21743504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation.
    Mookiah MR; Acharya UR; Chua CK; Min LC; Ng EY; Mushrif MM; Laude A
    Proc Inst Mech Eng H; 2013 Jan; 227(1):37-49. PubMed ID: 23516954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer-aided diagnosis of plus disease via measurement of vessel thickness in retinal fundus images of preterm infants.
    Oloumi F; Rangayyan RM; Casti P; Ells AL
    Comput Biol Med; 2015 Nov; 66():316-29. PubMed ID: 26457930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retinal image assessment using bi-level adaptive morphological component analysis.
    Javidi M; Harati A; Pourreza H
    Artif Intell Med; 2019 Aug; 99():101702. PubMed ID: 31606110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy.
    Narasimha-Iyer H; Can A; Roysam B; Stewart CV; Tanenbaum HL; Majerovics A; Singh H
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1084-98. PubMed ID: 16761836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies.
    Koh JEW; Acharya UR; Hagiwara Y; Raghavendra U; Tan JH; Sree SV; Bhandary SV; Rao AK; Sivaprasad S; Chua KC; Laude A; Tong L
    Comput Biol Med; 2017 May; 84():89-97. PubMed ID: 28351716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation.
    Yin Y; Adel M; Bourennane S
    Comput Math Methods Med; 2013; 2013():260410. PubMed ID: 24382979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feature extraction and selection for the automatic detection of hard exudates in retinal images.
    Garcia M; Hornero R; Sánchez CI; López MI; Diez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.