These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24718447)

  • 41. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method.
    Prakash Parthiban S; Elayaraja K; Girija EK; Yokogawa Y; Kesavamoorthy R; Palanichamy M; Asokan K; Narayana Kalkura S
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S77-83. PubMed ID: 18543086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydroxyapatite coating on damaged tooth surfaces by immersion.
    Lim BK; Sun F; Ryu SC; Koh K; Han DW; Lee J
    Biomed Mater; 2009 Apr; 4(2):025017. PubMed ID: 19349656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration.
    Dai Z; Dang M; Zhang W; Murugan S; Teh SW; Pan H
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1898-1907. PubMed ID: 31066314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.
    Qi C; Zhu YJ; Lu BQ; Zhao XY; Zhao J; Chen F; Wu J
    Chemistry; 2013 Apr; 19(17):5332-41. PubMed ID: 23460360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol-gel method.
    Kaygili O; Keser S; Al Orainy RH; Ates T; Yakuphanoglu F
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():239-44. PubMed ID: 24411374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on sintering process of synthetic hydroxyapatite.
    Malina D; Biernat K; Sobczak-Kupiec A
    Acta Biochim Pol; 2013; 60(4):851-5. PubMed ID: 24432345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering.
    Patel DK; Jin B; Dutta SD; Lim KT
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1953-1960. PubMed ID: 31820846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.
    Simmons LM; Montgomery J; Beaumont J; Davis GR; Al-Jawad M
    Arch Oral Biol; 2013 Nov; 58(11):1726-34. PubMed ID: 24112740
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of high-temperature stabilized beta-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7 x 10H2O addition.
    Lin FH; Liao CJ; Chen KS; Sun JS
    Biomaterials; 1998 Jun; 19(11-12):1101-7. PubMed ID: 9692809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooling rate effects on thermal, structural, and microstructural properties of bio-hydroxyapatite obtained from bovine bone.
    Ramirez-Gutierrez CF; Palechor-Ocampo AF; Londoño-Restrepo SM; Millán-Malo BM; Rodriguez-García ME
    J Biomed Mater Res B Appl Biomater; 2016 Feb; 104(2):339-44. PubMed ID: 25952013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold.
    Mondal S; Mondal A; Mandal N; Mondal B; Mukhopadhyay SS; Dey A; Singh S
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1233-40. PubMed ID: 24288117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ study of hydroxyapatite from cattle during a controlled calcination process using HT-XRD.
    Londoño-Restrepo SM; Millán-Malo BM; Del Real-López A; Rodriguez-García ME
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110020. PubMed ID: 31546350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydroxyapatite moldable formulation using natural rubber latex as binder.
    Sailaja GS; Ramesh P; Varma HK
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):231-8. PubMed ID: 17183580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites.
    Bareiro O; Santos LA
    Colloids Surf B Biointerfaces; 2014 Mar; 115():400-5. PubMed ID: 24503294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere.
    Liao CJ; Lin FH; Chen KS; Sun JS
    Biomed Sci Instrum; 1999; 35():99-104. PubMed ID: 11143400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites.
    Wan C; Chen B
    Nanoscale; 2011 Feb; 3(2):693-700. PubMed ID: 21103489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adhesion of Hydroxyapatite Nanoparticles to Dental Materials under Oral Conditions.
    Nobre CMG; Pütz N; Hannig M
    Scanning; 2020; 2020():6065739. PubMed ID: 32454927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.
    Yao X; Tan S; Jiang D
    J Mater Sci Mater Med; 2005 Feb; 16(2):161-5. PubMed ID: 15744605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bone mineral change during experimental heating: an X-ray scattering investigation.
    Hiller JC; Thompson TJ; Evison MP; Chamberlain AT; Wess TJ
    Biomaterials; 2003 Dec; 24(28):5091-7. PubMed ID: 14568425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.