These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24718558)

  • 1. Voluntarily-generated unimanual preparation is associated with stopping success: evidence from LRP and lateralized mu ERD before the stop signal.
    Ko YT; Cheng SK; Juan CH
    Psychol Res; 2015 Mar; 79(2):249-58. PubMed ID: 24718558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupling countermands nonselective response inhibition during selective stopping.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    J Neurophysiol; 2022 Jan; 127(1):188-203. PubMed ID: 34936517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified account of simple and response-selective inhibition.
    Gronau QF; Hinder MR; Salomoni SE; Matzke D; Heathcote A
    Cogn Psychol; 2024 Mar; 149():101628. PubMed ID: 38199181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG signatures associated with stopping are sensitive to preparation.
    Greenhouse I; Wessel JR
    Psychophysiology; 2013 Sep; 50(9):900-8. PubMed ID: 23763667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ERP components associated with successful and unsuccessful stopping in a stop-signal task.
    Kok A; Ramautar JR; De Ruiter MB; Band GP; Ridderinkhof KR
    Psychophysiology; 2004 Jan; 41(1):9-20. PubMed ID: 14692996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation to inhibit a response complements response inhibition during performance of a stop-signal task.
    Chikazoe J; Jimura K; Hirose S; Yamashita K; Miyashita Y; Konishi S
    J Neurosci; 2009 Dec; 29(50):15870-7. PubMed ID: 20016103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early Rise and Persistent Inhibition of Electromyography during Failed Stopping.
    Fisher M; Trinh H; O'Neill J; Greenhouse I
    J Cogn Neurosci; 2024 Jun; 36(7):1412-1426. PubMed ID: 38683729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing anticipatory and stop-signal response inhibition with a novel, open-source selective stopping toolbox.
    Wadsley CG; Cirillo J; Nieuwenhuys A; Byblow WD
    Exp Brain Res; 2023 Feb; 241(2):601-613. PubMed ID: 36635589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task.
    Dykstra T; Waller DA; Hazeltine E; Wessel JR
    J Cogn Neurosci; 2020 Apr; 32(4):590-602. PubMed ID: 31742470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation.
    Raud L; Huster RJ; Ivry RB; Labruna L; Messel MS; Greenhouse I
    J Neurosci; 2020 Oct; 40(41):7921-7935. PubMed ID: 32928884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proactive cues facilitate faster action reprogramming, but not stopping, in a response-selective stop signal task.
    Salomoni SE; Gronau QF; Heathcote A; Matzke D; Hinder MR
    Sci Rep; 2023 Nov; 13(1):19564. PubMed ID: 37949974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.
    Castro-Meneses LJ; Johnson BW; Sowman PF
    Exp Brain Res; 2016 Jun; 234(6):1525-35. PubMed ID: 26821315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop-signal task.
    Skippen P; Fulham WR; Michie PT; Matzke D; Heathcote A; Karayanidis F
    Psychophysiology; 2020 Oct; 57(10):e13619. PubMed ID: 32725926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological signatures of the race model in human primary motor cortex.
    Hughes ME; Fulham WR; Michie PT
    Psychophysiology; 2016 Feb; 53(2):229-36. PubMed ID: 26481459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological evidence for different inhibitory mechanisms when stopping or changing a planned response.
    Krämer UM; Knight RT; Münte TF
    J Cogn Neurosci; 2011 Sep; 23(9):2481-93. PubMed ID: 20849230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.