These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24718695)

  • 1. Facile preparation of monolithic κ-carrageenan aerogels.
    Ganesan K; Ratke L
    Soft Matter; 2014 May; 10(18):3218-24. PubMed ID: 24718695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels.
    Wan C; Lu Y; Jiao Y; Jin C; Sun Q; Li J
    Carbohydr Polym; 2015 Mar; 118():115-8. PubMed ID: 25542115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt.
    Schestakow M; Karadagli I; Ratke L
    Carbohydr Polym; 2016 Feb; 137():642-649. PubMed ID: 26686174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Weak Organic Acids as Coagulants on Tailoring the Properties of Cellulose Aerogel Beads.
    Costa D; Milow B; Ganesan K
    Chemistry; 2024 Sep; 30(51):e202401794. PubMed ID: 38945825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan-based aerogels with high adsorption performance.
    Chang X; Chen D; Jiao X
    J Phys Chem B; 2008 Jul; 112(26):7721-5. PubMed ID: 18543985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Morphology of Poly(ether ether ketone) Aerogels.
    Talley SJ; Vivod SL; Nguyen BA; Meador MAB; Radulescu A; Moore RB
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31508-31519. PubMed ID: 31379150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors.
    Cai X; Tan G; Deng Z; Liu J; Gui D
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying.
    Tian HY; Buckley CE; Mulè S; Paskevicius M; Dhal BB
    Nanotechnology; 2008 Nov; 19(47):475605. PubMed ID: 21836280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels.
    Guo K; Song H; Chen X; Du X; Zhong L
    Phys Chem Chem Phys; 2014 Jun; 16(23):11603-8. PubMed ID: 24806077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose aerogels from aqueous alkali hydroxide-urea solution.
    Cai J; Kimura S; Wada M; Kuga S; Zhang L
    ChemSusChem; 2008; 1(1-2):149-54. PubMed ID: 18605678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cobalt oxide aerogels and nanocomposite systems containing single-walled carbon nanotubes.
    Gill SK; Shobe AM; Hope-Weeks LJ
    Scanning; 2009; 31(3):132-8. PubMed ID: 19452519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents.
    Fairén-Jiménez D; Carrasco-Marín F; Moreno-Castilla C
    Langmuir; 2008 Mar; 24(6):2820-5. PubMed ID: 18257593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An easy way to prepare monolithic inorganic oxide aerogels.
    Ren L; Cui S; Cao F; Guo Q
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10147-9. PubMed ID: 25056911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology control of nickel nanoparticles prepared in situ within silica aerogels produced by novel ambient pressure drying.
    Lu J; Wang J; Hassan KT; Talmantaite A; Xiao Z; Hunt MRC; Šiller L
    Sci Rep; 2020 Jul; 10(1):11743. PubMed ID: 32678151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-free sol-gel preparation and characterization of free-standing visible light responsive C,N-modified porous monolithic TiO2.
    Chen C; Cai W; Long M; Zhang J; Zhou B; Wu Y; Wu D
    J Hazard Mater; 2010 Jun; 178(1-3):560-5. PubMed ID: 20171008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels.
    Wang X; Jana SC
    Langmuir; 2013 May; 29(18):5589-98. PubMed ID: 23573990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
    Yu H; Brock SL
    ACS Nano; 2008 Aug; 2(8):1563-70. PubMed ID: 19206358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilicity-controlled carbon aerogels with high mesoporosity.
    Tao Y; Endo M; Kaneko K
    J Am Chem Soc; 2009 Jan; 131(3):904-5. PubMed ID: 19119814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of highly crystalline graphene aerogels.
    Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A
    ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.