BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24718760)

  • 1. Marine biological shifts and climate.
    Beaugrand G; Goberville E; Luczak C; Kirby RR
    Proc Biol Sci; 2014 May; 281(1783):20133350. PubMed ID: 24718760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community-wide changes in intertaxonomic temporal co-occurrence resulting from phenological shifts.
    Hua F; Hu J; Liu Y; Giam X; Lee TM; Luo H; Wu J; Liang Q; Zhao J; Long X; Pang H; Wang B; Liang W; Zhang Z; Gao X; Zhu J
    Glob Chang Biol; 2016 May; 22(5):1746-54. PubMed ID: 26680152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the biogeographic boundary shift of Calanus finmarchicus reveals drivers of Arctic Atlantification by subarctic zooplankton.
    Freer JJ; Daase M; Tarling GA
    Glob Chang Biol; 2022 Jan; 28(2):429-440. PubMed ID: 34652875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf.
    Grieve BD; Hare JA; Saba VS
    Sci Rep; 2017 Jul; 7(1):6264. PubMed ID: 28740241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel, Unbiased Analysis Approach for Investigating Population Dynamics: A Case Study on Calanus finmarchicus and Its Decline in the North Sea.
    Papworth DJ; Marini S; Conversi A
    PLoS One; 2016; 11(7):e0158230. PubMed ID: 27366910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change has altered zooplankton-fuelled carbon export in the North Atlantic.
    Brun P; Stamieszkin K; Visser AW; Licandro P; Payne MR; Kiørboe T
    Nat Ecol Evol; 2019 Mar; 3(3):416-423. PubMed ID: 30742109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.
    Wilson RJ; Banas NS; Heath MR; Speirs DC
    Glob Chang Biol; 2016 Oct; 22(10):3332-40. PubMed ID: 26990351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.
    Nicolas D; Rochette S; Llope M; Licandro P
    PLoS One; 2014; 9(2):e88447. PubMed ID: 24551103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change-related regime shifts have altered spatial synchrony of plankton dynamics in the North Sea.
    Defriez EJ; Sheppard LW; Reid PC; Reuman DC
    Glob Chang Biol; 2016 Jun; 22(6):2069-80. PubMed ID: 26810148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decadal decline of dominant copepod species in the North Sea is associated with ocean warming: Importance of marine heatwaves.
    Semmouri I; De Schamphelaere KAC; Mortelmans J; Mees J; Asselman J; Janssen CR
    Mar Pollut Bull; 2023 Aug; 193():115159. PubMed ID: 37329739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics.
    Otto SA; Diekmann R; Flinkman J; Kornilovs G; Möllmann C
    PLoS One; 2014; 9(3):e90875. PubMed ID: 24614110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.
    Beaugrand G; Edwards M; Brander K; Luczak C; Ibanez F
    Ecol Lett; 2008 Nov; 11(11):1157-1168. PubMed ID: 18647332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions.
    Weydmann A; Przyłucka A; Lubośny M; Walczyńska KS; Serrão EA; Pearson GA; Burzyński A
    Sci Rep; 2017 Oct; 7(1):13702. PubMed ID: 29057900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decadal changes in zooplankton of the Northeast U.S. continental shelf.
    Bi H; Ji R; Liu H; Jo YH; Hare JA
    PLoS One; 2014; 9(1):e87720. PubMed ID: 24498177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal shift in the factors affecting the population dynamics of Calanus copepods in the North Sea.
    Montero JT; Lima M; Estay SA; Rezende EL
    Glob Chang Biol; 2021 Feb; 27(3):576-586. PubMed ID: 33063896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate, copepods and seabirds in the boreal Northeast Atlantic - current state and future outlook.
    Frederiksen M; Anker-Nilssen T; Beaugrand G; Wanless S
    Glob Chang Biol; 2013 Feb; 19(2):364-72. PubMed ID: 23504776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.