BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24719025)

  • 1. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat.
    Diaz Quiroz JF; Tsai E; Coyle M; Sehm T; Echeverri K
    Dis Model Mech; 2014 Jun; 7(6):601-11. PubMed ID: 24719025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AP-1
    Sabin KZ; Jiang P; Gearhart MD; Stewart R; Echeverri K
    Commun Biol; 2019; 2():91. PubMed ID: 30854483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preclinical Molecular Signatures of Spinal Cord Functional Restoration: Optimizing the Metamorphic Axolotl (
    Demircan T; Hacıbektaşoğlu H; Sibai M; Fesçioğlu EC; Altuntaş E; Öztürk G; Süzek BE
    OMICS; 2020 Jun; 24(6):370-378. PubMed ID: 32496969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Reproducible Spinal Cord Crush Injury in the Regeneration-Permissive Axolotl.
    Walker S; Santos-Ferreira T; Echeverri K
    Methods Mol Biol; 2023; 2636():237-246. PubMed ID: 36881304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.
    Sabin K; Santos-Ferreira T; Essig J; Rudasill S; Echeverri K
    Dev Biol; 2015 Dec; 408(1):14-25. PubMed ID: 26477559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum.
    Monaghan JR; Walker JA; Page RB; Putta S; Beachy CK; Voss SR
    J Neurochem; 2007 Apr; 101(1):27-40. PubMed ID: 17241119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish.
    Yu YM; Gibbs KM; Davila J; Campbell N; Sung S; Todorova TI; Otsuka S; Sabaawy HE; Hart RP; Schachner M
    Eur J Neurosci; 2011 May; 33(9):1587-97. PubMed ID: 21447094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events.
    Sehm T; Sachse C; Frenzel C; Echeverri K
    Dev Biol; 2009 Oct; 334(2):468-80. PubMed ID: 19682983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration.
    Tazaki A; Tanaka EM; Fei JF
    Dev Biol; 2017 Dec; 432(1):63-71. PubMed ID: 29030146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates.
    Lee-Liu D; Edwards-Faret G; Tapia VS; Larraín J
    Genesis; 2013 Aug; 51(8):529-44. PubMed ID: 23760835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of stem cell identity by miR-200a during spinal cord regeneration.
    Walker SE; Sabin KZ; Gearhart MD; Yamamoto K; Echeverri K
    Development; 2022 Feb; 149(3):. PubMed ID: 35156681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-125b promotes the regeneration and repair of spinal cord injury through regulation of JAK/STAT pathway.
    Dai J; Xu LJ; Han GD; Sun HL; Zhu GT; Jiang HT; Yu GY; Tang XM
    Eur Rev Med Pharmacol Sci; 2018 Feb; 22(3):582-589. PubMed ID: 29461585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation.
    Gupta S; Dutta S; Hui SP
    Cells; 2023 Jun; 12(13):. PubMed ID: 37443728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury.
    Peng SX; Yao L; Cui C; Zhao HD; Liu CJ; Li YH; Wang LF; Huang SB; Shen YQ
    Neuroscience; 2017 May; 351():36-46. PubMed ID: 28347780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury.
    Li P; Teng ZQ; Liu CM
    Neural Plast; 2016; 2016():1279051. PubMed ID: 27818801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray analysis of microRNA expression during axolotl limb regeneration.
    Holman EC; Campbell LJ; Hines J; Crews CM
    PLoS One; 2012; 7(9):e41804. PubMed ID: 23028429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse.
    Hong P; Jiang M; Li H
    Glia; 2014 Dec; 62(12):2044-60. PubMed ID: 25043492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.