BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24719080)

  • 21. Divergent anticodon recognition in contrasting glutamyl-tRNA synthetases.
    Lee J; Hendrickson TL
    J Mol Biol; 2004 Dec; 344(5):1167-74. PubMed ID: 15561136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Gagnon Y; Lacoste L; Champagne N; Lapointe J
    J Biol Chem; 1996 Jun; 271(25):14856-63. PubMed ID: 8662929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth inhibition of Escherichia coli during heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged glutamyl-tRNA1 Gln.
    Baick JW; Yoon JH; Namgoong S; Söll D; Kim SI; Eom SH; Hong KW
    J Microbiol; 2004 Jun; 42(2):111-6. PubMed ID: 15357304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA.
    Lu J; Esberg A; Huang B; Byström AS
    Nucleic Acids Res; 2008 Mar; 36(4):1072-80. PubMed ID: 18096622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific phase arrest of cell cycle restores cell viability against tRNA cleavage by killer toxin.
    Shigematsu M; Ogawa T; Kitamoto HK; Hidaka M; Masaki H
    Biochem Biophys Res Commun; 2012 Apr; 420(4):750-4. PubMed ID: 22450321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Natural UAG suppressor glutamine tRNA in retrovirus infected cells].
    Kuchino Y
    Gan To Kagaku Ryoho; 1989 Mar; 16(3 Pt 2):522-9. PubMed ID: 2539781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln.
    Huot JL; Fischer F; Corbeil J; Madore E; Lorber B; Diss G; Hendrickson TL; Kern D; Lapointe J
    Nucleic Acids Res; 2011 Nov; 39(21):9306-15. PubMed ID: 21813455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
    Liu J; Ibba M; Hong KW; Söll D
    Biochemistry; 1998 Jul; 37(27):9836-42. PubMed ID: 9657697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease.
    Keppetipola N; Jain R; Meineke B; Diver M; Shuman S
    RNA; 2009 Jun; 15(6):1036-44. PubMed ID: 19383764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gln-tRNAGln formation from Glu-tRNAGln requires cooperation of an asparaginase and a Glu-tRNAGln kinase.
    Feng L; Sheppard K; Tumbula-Hansen D; Söll D
    J Biol Chem; 2005 Mar; 280(9):8150-5. PubMed ID: 15611111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation.
    McClain WH; Schneider J; Bhattacharya S; Gabriel K
    Proc Natl Acad Sci U S A; 1998 Jan; 95(2):460-5. PubMed ID: 9435214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA; Perona JJ; Söll D; Steitz TA
    Science; 1989 Dec; 246(4934):1135-42. PubMed ID: 2479982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three Tetrahymena tRNA(Gln) isoacceptors as tools for studying unorthodox codon recognition and codon context effects during protein synthesis in vitro.
    Schüll C; Beier H
    Nucleic Acids Res; 1994 Jun; 22(11):1974-80. PubMed ID: 8029002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The accuracy of aminoacylation--ensuring the fidelity of the genetic code.
    Söll D
    Experientia; 1990 Dec; 46(11-12):1089-96. PubMed ID: 2253707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticodon nuclease encoding virus-like elements in yeast.
    Satwika D; Klassen R; Meinhardt F
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):345-56. PubMed ID: 22899498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity.
    Mandal AK; Bhattacharyya A; Bhattacharyya S; Bhattacharyya T; Roy S
    Protein Sci; 1998 Apr; 7(4):1046-51. PubMed ID: 9568911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.