These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 24719225)
1. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production. Praveenkumar R; Kim B; Choi E; Lee K; Cho S; Hyun JS; Park JY; Lee YC; Lee HU; Lee JS; Oh YK Bioprocess Biosyst Eng; 2014 Oct; 37(10):2083-94. PubMed ID: 24719225 [TBL] [Abstract][Full Text] [Related]
2. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Praveenkumar R; Kim B; Choi E; Lee K; Park JY; Lee JS; Lee YC; Oh YK Bioresour Technol; 2014 Nov; 171():500-5. PubMed ID: 25227588 [TBL] [Abstract][Full Text] [Related]
3. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094 [TBL] [Abstract][Full Text] [Related]
4. Mixed microalgae consortia growth under higher concentration of CO Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147 [TBL] [Abstract][Full Text] [Related]
5. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2. Chen W; Zhang S; Rong J; Li X; Chen H; He C; Wang Q Environ Sci Technol; 2016 Feb; 50(3):1620-7. PubMed ID: 26751001 [TBL] [Abstract][Full Text] [Related]
6. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Kandimalla P; Desi S; Vurimindi H Environ Sci Pollut Res Int; 2016 May; 23(10):9345-54. PubMed ID: 26304814 [TBL] [Abstract][Full Text] [Related]
7. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
8. Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Zhu B; Sun F; Yang M; Lu L; Yang G; Pan K Bioresour Technol; 2014 Dec; 174():53-9. PubMed ID: 25463781 [TBL] [Abstract][Full Text] [Related]
9. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation. Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599 [TBL] [Abstract][Full Text] [Related]
10. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
11. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Kumar V; Muthuraj M; Palabhanvi B; Ghoshal AK; Das D Bioresour Technol; 2014 Oct; 170():115-124. PubMed ID: 25125198 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. Muthuraj M; Kumar V; Palabhanvi B; Das D J Ind Microbiol Biotechnol; 2014 Mar; 41(3):499-511. PubMed ID: 24445403 [TBL] [Abstract][Full Text] [Related]
13. Biological CO Duarte JH; de Morais EG; Radmann EM; Costa JAV Bioresour Technol; 2017 Jun; 234():472-475. PubMed ID: 28342576 [TBL] [Abstract][Full Text] [Related]
14. Integrated lipid production, CO Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683 [TBL] [Abstract][Full Text] [Related]
15. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
16. Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Farooq W; Lee YC; Ryu BG; Kim BH; Kim HS; Choi YE; Yang JW Bioresour Technol; 2013 Mar; 132():230-8. PubMed ID: 23411453 [TBL] [Abstract][Full Text] [Related]
17. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285 [TBL] [Abstract][Full Text] [Related]
18. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Li X; Xu H; Wu Q Biotechnol Bioeng; 2007 Nov; 98(4):764-71. PubMed ID: 17497732 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas. Lee SY; Lee JS; Sim SJ Bioresour Technol; 2023 Apr; 373():128719. PubMed ID: 36773814 [TBL] [Abstract][Full Text] [Related]
20. Optimization of flocculation efficiency of lipid-rich marine Chlorella sp. biomass and evaluation of its composition in different cultivation modes. Mandik YI; Cheirsilp B; Boonsawang P; Prasertsan P Bioresour Technol; 2015 Apr; 182():89-97. PubMed ID: 25682228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]