These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24719231)

  • 1. Stabilization of catalytically active Cu⁺ surface sites on titanium-copper mixed-oxide films.
    Baber AE; Yang X; Kim HY; Mudiyanselage K; Soldemo M; Weissenrieder J; Senanayake SD; Al-Mahboob A; Sadowski JT; Evans J; Rodriguez JA; Liu P; Hoffmann FM; Chen JG; Stacchiola DJ
    Angew Chem Int Ed Engl; 2014 May; 53(21):5336-40. PubMed ID: 24719231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing adsorption sites for CO on ceria.
    Mudiyanselage K; Kim HY; Senanayake SD; Baber AE; Liu P; Stacchiola D
    Phys Chem Chem Phys; 2013 Oct; 15(38):15856-62. PubMed ID: 23942870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the chemical nature of active surface sites present on bulk mixed metal oxide catalysts.
    Wachs IE; Jehng JM; Ueda W
    J Phys Chem B; 2005 Feb; 109(6):2275-84. PubMed ID: 16851220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation.
    Khan WU; Yu IKM; Sun Y; Polson MIJ; Golovko V; Lam FLY; Ogino I; Tsang DCW; Yip ACK
    Environ Pollut; 2021 Jun; 279():116899. PubMed ID: 33743438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective molecular adsorption in sub-nanometer cages of a Cu2O surface oxide.
    Mudiyanselage K; An W; Yang F; Liu P; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10726-31. PubMed ID: 23685717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation on inverse CeO(x)/Cu(111) catalysts: high catalytic activity and ceria-promoted dissociation of O2.
    Yang F; Graciani J; Evans J; Liu P; Hrbek J; Sanz JF; Rodriguez JA
    J Am Chem Soc; 2011 Mar; 133(10):3444-51. PubMed ID: 21341793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity.
    Nhi BD; Akhmadullin RM; Akhmadullina AG; Samuilov YD; Aghajanian SI
    Chemphyschem; 2013 Dec; 14(18):4149-57. PubMed ID: 24243767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Aspects on the Mechanism of C3H6 selective catalytic reduction of NO in the presence of O2 over LaFe1-x(Cu, Pd)xO3-δ perovskites.
    Yang W; Zhang R; Chen B; Duprez D; Royer S
    Environ Sci Technol; 2012 Oct; 46(20):11280-8. PubMed ID: 22985212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Ti3+ on TiO2-supported Cu catalysts used for CO oxidation.
    Chen CS; Chen TC; Chen CC; Lai YT; You JH; Chou TM; Chen CH; Lee JF
    Langmuir; 2012 Jul; 28(26):9996-10006. PubMed ID: 22676402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DRIFT study of CuO-CeO₂-TiO₂ mixed oxides for NOx reduction with NH₃ at low temperatures.
    Chen L; Si Z; Wu X; Weng D
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8134-45. PubMed ID: 24848157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ imaging of Cu2O under reducing conditions: formation of metallic fronts by mass transfer.
    Baber AE; Xu F; Dvorak F; Mudiyanselage K; Soldemo M; Weissenrieder J; Senanayake SD; Sadowski JT; Rodriguez JA; Matolín V; White MG; Stacchiola DJ
    J Am Chem Soc; 2013 Nov; 135(45):16781-4. PubMed ID: 24168720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal-plane-controlled surface chemistry and catalytic performance of surfactant-free Cu2 O nanocrystals.
    Hua Q; Cao T; Bao H; Jiang Z; Huang W
    ChemSusChem; 2013 Oct; 6(10):1966-72. PubMed ID: 24106201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.