These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 24719277)
1. Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport. Bhatnagar S; Schiffter H; Coussios CC J Pharm Sci; 2014 Jun; 103(6):1903-12. PubMed ID: 24719277 [TBL] [Abstract][Full Text] [Related]
2. A non-exothermic cell-embedding tissue-mimicking material for studies of ultrasound-induced hyperthermia and drug release. Mylonopoulou E; Bazán-Peregrino M; Arvanitis CD; Coussios CC Int J Hyperthermia; 2013; 29(2):133-44. PubMed ID: 23406389 [TBL] [Abstract][Full Text] [Related]
3. Cavitation-enhanced delivery of insulin in agar and porcine models of human skin. Feiszthuber H; Bhatnagar S; Gyöngy M; Coussios CC Phys Med Biol; 2015 Mar; 60(6):2421-34. PubMed ID: 25716689 [TBL] [Abstract][Full Text] [Related]
4. Contribution of inertial cavitation in the enhancement of in vitro transscleral drug delivery. Razavi A; Clement D; Fowler RA; Birer A; Chavrier F; Mestas JL; Romano F; Chapelon JY; Béglé A; Lafon C Ultrasound Med Biol; 2014 Jun; 40(6):1216-27. PubMed ID: 24613634 [TBL] [Abstract][Full Text] [Related]
5. Influence of Acoustic Reflection on the Inertial Cavitation Dose in a Franz Diffusion Cell. Robertson J; Becker S Ultrasound Med Biol; 2018 May; 44(5):1100-1109. PubMed ID: 29525456 [TBL] [Abstract][Full Text] [Related]
6. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Tezel A; Mitragotri S Biophys J; 2003 Dec; 85(6):3502-12. PubMed ID: 14645045 [TBL] [Abstract][Full Text] [Related]
7. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Tang H; Wang CC; Blankschtein D; Langer R Pharm Res; 2002 Aug; 19(8):1160-9. PubMed ID: 12240942 [TBL] [Abstract][Full Text] [Related]
8. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery. Fan CH; Ting CY; Chang YC; Wei KC; Liu HL; Yeh CK Acta Biomater; 2015 Mar; 15():89-101. PubMed ID: 25575854 [TBL] [Abstract][Full Text] [Related]
9. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. Mitragotri S; Edwards DA; Blankschtein D; Langer R J Pharm Sci; 1995 Jun; 84(6):697-706. PubMed ID: 7562407 [TBL] [Abstract][Full Text] [Related]
10. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Ueda H; Mutoh M; Seki T; Kobayashi D; Morimoto Y Biol Pharm Bull; 2009 May; 32(5):916-20. PubMed ID: 19420764 [TBL] [Abstract][Full Text] [Related]
11. Pulsed High-Intensity Focused Ultrasound Enhances Delivery of Doxorubicin in a Preclinical Model of Pancreatic Cancer. Li T; Wang YN; Khokhlova TD; D'Andrea S; Starr F; Chen H; McCune JS; Risler LJ; Mashadi-Hossein A; Hingorani SR; Chang A; Hwang JH Cancer Res; 2015 Sep; 75(18):3738-46. PubMed ID: 26216548 [TBL] [Abstract][Full Text] [Related]
12. Ultrasound-enhanced penetration through sclera depends on frequency of sonication and size of macromolecules. Chau Y; Suen WL; Tse HY; Wong HS Eur J Pharm Sci; 2017 Mar; 100():273-279. PubMed ID: 28104474 [TBL] [Abstract][Full Text] [Related]
13. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. Liu HL; Hsieh CM Ultrason Sonochem; 2009 Mar; 16(3):431-8. PubMed ID: 18951828 [TBL] [Abstract][Full Text] [Related]
14. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy. Hockham N; Coussios CC; Arora M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364 [TBL] [Abstract][Full Text] [Related]
15. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration. Park D; Song G; Jo Y; Won J; Son T; Cha O; Kim J; Jung B; Park H; Kim CW; Seo J PLoS One; 2016; 11(6):e0157707. PubMed ID: 27322539 [TBL] [Abstract][Full Text] [Related]
16. The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Aw MS; Paniwnyk L; Losic D Expert Opin Drug Deliv; 2016 Oct; 13(10):1383-96. PubMed ID: 27195384 [TBL] [Abstract][Full Text] [Related]
17. Ultrasound-mediated cavitation does not decrease the activity of small molecule, antibody or viral-based medicines. Myers R; Grundy M; Rowe C; Coviello CM; Bau L; Erbs P; Foloppe J; Balloul JM; Story C; Coussios CC; Carlisle R Int J Nanomedicine; 2018; 13():337-349. PubMed ID: 29391793 [TBL] [Abstract][Full Text] [Related]
19. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. Bhatnagar S; Kwan JJ; Shah AR; Coussios CC; Carlisle RC J Control Release; 2016 Sep; 238():22-30. PubMed ID: 27417040 [TBL] [Abstract][Full Text] [Related]
20. Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison by 1-MHz pulsed ultrasound. Tu J; Matula TJ; Brayman AA; Crum LA Ultrasound Med Biol; 2006 Feb; 32(2):281-8. PubMed ID: 16464673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]