BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24719843)

  • 1. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone).
    He X; Kawazoe N; Chen G
    Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of nanosized biodegradable polymer capsules.
    Sakai H; Sekita A; Tanaka K; Sakai K; Kondo T; Abe M
    J Oleo Sci; 2011; 60(11):569-73. PubMed ID: 22027022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyester scaffolds with bimodal pore size distribution for tissue engineering.
    Sosnowski S; Woźniak P; Lewandowska-Szumieł M
    Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ε-caprolactone) and poly(D,L-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression-particulate leaching method.
    Barbanti SH; Santos AR; Zavaglia CA; Duek EA
    J Mater Sci Mater Med; 2011 Oct; 22(10):2377-85. PubMed ID: 21833608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents.
    Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R
    Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2001 Oct; 57(1):8-14. PubMed ID: 11416843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
    Mo X; Weber HJ; Ramakrishna S
    Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique.
    Wang W; Nie W; Liu D; Du H; Zhou X; Chen L; Wang H; Mo X; Li L; He C
    Int J Nanomedicine; 2018; 13():7003-7018. PubMed ID: 30464455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biodegradable hybrid sponge nested with collagen microsponges.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2000 Aug; 51(2):273-9. PubMed ID: 10825227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering.
    Baker SC; Rohman G; Southgate J; Cameron NR
    Biomaterials; 2009 Mar; 30(7):1321-8. PubMed ID: 19091399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1935-43. PubMed ID: 9863527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.