BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 24720524)

  • 1. Carrier-free immobilization of lipase from Candida rugosa with polyethyleneimines by carboxyl-activated cross-linking.
    Velasco-Lozano S; López-Gallego F; Vázquez-Duhalt R; Mateos-Díaz JC; Guisán JM; Favela-Torres E
    Biomacromolecules; 2014 May; 15(5):1896-903. PubMed ID: 24720524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase.
    Sampath C; Belur PD; Iyyasami R
    Enzyme Microb Technol; 2018 Mar; 110():20-29. PubMed ID: 29310852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.
    Roy I; Mukherjee J; Gupta MN
    Methods Mol Biol; 2017; 1504():109-123. PubMed ID: 27770417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder.
    Shah S; Sharma A; Gupta MN
    Anal Biochem; 2006 Apr; 351(2):207-13. PubMed ID: 16500610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: preparation, optimization, characterization, and application for enantioselective resolution reactions.
    Kartal F; Kilinc A
    Biotechnol Prog; 2012 Jul; 28(4):937-45. PubMed ID: 22685034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.
    Rehman S; Bhatti HN; Bilal M; Asgher M
    Int J Biol Macromol; 2016 Oct; 91():1161-9. PubMed ID: 27365121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Immobilization of lipase by chemical modification of chitosan].
    Hu WJ; Tan TW; Wang F; Gao Y
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):667-71. PubMed ID: 17822041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized preparation and characterization of CLEA-lipase from cocoa pod husk.
    Khanahmadi S; Yusof F; Amid A; Mahmod SS; Mahat MK
    J Biotechnol; 2015 May; 202():153-61. PubMed ID: 25481099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Strategies to Produce Highly Porous Cross-Linked Aggregates of Porcine Pancreas Lipase with Magnetic Properties.
    Guimarães JR; Giordano RLC; Fernandez-Lafuente R; Tardioli PW
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30453506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine.
    Ondul E; Dizge N; Albayrak N
    Colloids Surf B Biointerfaces; 2012 Jun; 95():109-14. PubMed ID: 22421414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y; Şit L
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone.
    Kim M; Park JM; Um HJ; Lee DH; Lee KH; Kobayashi F; Iwasaka Y; Hong CS; Min J; Kim YH
    J Basic Microbiol; 2010 Jun; 50(3):218-26. PubMed ID: 20473952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple technique of preparing stable CLEAs of phenylalanine ammonia lyase using co-aggregation with starch and bovine serum albumin.
    Cui JD; Sun LM; Li LL
    Appl Biochem Biotechnol; 2013 Aug; 170(8):1827-37. PubMed ID: 23754561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15.
    Gao S; Wang Y; Diao X; Luo G; Dai Y
    Bioresour Technol; 2010 Jun; 101(11):3830-7. PubMed ID: 20116998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.
    Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N
    J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance.
    Fernández-Lorente G; Palomo JM; Mateo C; Munilla R; Ortiz C; Cabrera Z; Guisán JM; Fernandez-Lafuente R
    Biomacromolecules; 2006 Sep; 7(9):2610-5. PubMed ID: 16961324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEI-crosslinked lipase on the surface of magnetic microspheres and its characteristics.
    Cao YP; Xia YP; Gu XF; Han L; Chen Q; Zhi GY; Zhang DH
    Colloids Surf B Biointerfaces; 2020 May; 189():110874. PubMed ID: 32087531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the biological functionalization of nanoparticles on magnetic CLEA preparation.
    Abdulhamid MB; Hero JS; Zamora M; Gómez MI; Navarro MC; Romero CM
    Int J Biol Macromol; 2021 Nov; 191():689-698. PubMed ID: 34547314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate.
    Jin W; Xu Y; Yu XW
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110501. PubMed ID: 31541891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations.
    Venditti I; Palocci C; Chronopoulou L; Fratoddi I; Fontana L; Diociaiuti M; Russo MV
    Colloids Surf B Biointerfaces; 2015 Jul; 131():93-101. PubMed ID: 25969418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.