These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 24720965)
21. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine. Satheeshkumar E; Karuppaiya P; Sivashanmugan K; Chao WT; Tsay HS; Yoshimura M Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():91-97. PubMed ID: 28347923 [TBL] [Abstract][Full Text] [Related]
22. Probing the effect of protein corona on SERS signals: insights from melamine detection in milk matrix. Mi S; Du Y; Gao F; Yuan S; Yu H; Guo Y; Cheng Y; Li G; Yao W Food Chem; 2024 Nov; 459():140416. PubMed ID: 39024877 [TBL] [Abstract][Full Text] [Related]
23. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
24. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Zhang C; You T; Yang N; Gao Y; Jiang L; Yin P Food Chem; 2019 Jul; 287():363-368. PubMed ID: 30857711 [TBL] [Abstract][Full Text] [Related]
25. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Du Y; Liu R; Liu B; Wang S; Han MY; Zhang Z Anal Chem; 2013 Mar; 85(6):3160-5. PubMed ID: 23438694 [TBL] [Abstract][Full Text] [Related]
26. Three-Dimensional-Stacked Gold Nanoparticles with Sub-5 nm Gaps on Vertically Aligned TiO Wang X; Zhu X; Shi H; Chen Y; Chen Z; Zeng Y; Tang Z; Duan H ACS Appl Mater Interfaces; 2018 Oct; 10(41):35607-35614. PubMed ID: 30232887 [TBL] [Abstract][Full Text] [Related]
27. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Zhang M; Cao X; Li H; Guan F; Guo J; Shen F; Luo Y; Sun C; Zhang L Food Chem; 2012 Dec; 135(3):1894-900. PubMed ID: 22953938 [TBL] [Abstract][Full Text] [Related]
28. Urchin-like LaVO₄/Au composite microspheres for surface-enhanced Raman scattering detection. Chen L; Wu M; Xiao C; Yu Y; Liu X; Qiu G J Colloid Interface Sci; 2015 Apr; 443():80-7. PubMed ID: 25540824 [TBL] [Abstract][Full Text] [Related]
29. Two-step aggregation of gold nanoparticles based on charge neutralization for detection of melamine by colorimetric and surface-enhanced Raman spectroscopy platform. Xing KY; Bao HH; Ding NS; Xiong YH; Peng J; Lai WH J Dairy Sci; 2022 Sep; 105(9):7298-7307. PubMed ID: 35863920 [TBL] [Abstract][Full Text] [Related]
30. [Alkaline silver colloid for surface enhanced Raman scattering and application to detection of melamine doped milk]. Tang JQ; Tian C; Zeng CY; Man SQ Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):709-13. PubMed ID: 23705438 [TBL] [Abstract][Full Text] [Related]
31. A "turn-on" fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs. Lu Q; Zhao J; Xue S; Yin P; Zhang Y; Yao S Analyst; 2015 Feb; 140(4):1155-60. PubMed ID: 25512948 [TBL] [Abstract][Full Text] [Related]
32. Rapid Detection of Melamine in Milk Using Immunological Separation and Surface Enhanced Raman Spectroscopy. Li X; Feng S; Hu Y; Sheng W; Zhang Y; Yuan S; Zeng H; Wang S; Lu X J Food Sci; 2015 Jun; 80(6):C1196-201. PubMed ID: 25920520 [TBL] [Abstract][Full Text] [Related]
33. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Chi H; Liu B; Guan G; Zhang Z; Han MY Analyst; 2010 May; 135(5):1070-5. PubMed ID: 20419258 [TBL] [Abstract][Full Text] [Related]
34. Rapid detection of melamine by DNA Walker mediated SERS sensing technique based on signal amplification function. Ma Y; Cui H; Chen R; Zhang R; Lin J; Ren S; Liang J; Gao Z Mikrochim Acta; 2024 Apr; 191(5):283. PubMed ID: 38652169 [TBL] [Abstract][Full Text] [Related]
35. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine. Cao Q; Yuan K; Yu J; Delaunay JJ; Che R J Colloid Interface Sci; 2017 Mar; 490():23-28. PubMed ID: 27870955 [TBL] [Abstract][Full Text] [Related]
36. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device. Li D; Lv DY; Zhu QX; Li H; Chen H; Wu MM; Chai YF; Lu F Food Chem; 2017 Jun; 224():382-389. PubMed ID: 28159284 [TBL] [Abstract][Full Text] [Related]
37. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Hu Y; Feng S; Gao F; Li-Chan EC; Grant E; Lu X Food Chem; 2015 Jun; 176():123-9. PubMed ID: 25624214 [TBL] [Abstract][Full Text] [Related]
38. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Huang H; Li L; Zhou G; Liu Z; Ma Q; Feng Y; Zeng G; Tinnefeld P; He Z Talanta; 2011 Aug; 85(2):1013-9. PubMed ID: 21726732 [TBL] [Abstract][Full Text] [Related]
39. An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Wu Q; Long Q; Li H; Zhang Y; Yao S Talanta; 2015 May; 136():47-53. PubMed ID: 25702984 [TBL] [Abstract][Full Text] [Related]