These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 24721224)
21. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. Chu JU; Moon I; Mun MS IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328 [TBL] [Abstract][Full Text] [Related]
22. Identification of a feature selection based pattern recognition scheme for finger movement recognition from multichannel EMG signals. Purushothaman G; Vikas R Australas Phys Eng Sci Med; 2018 Jun; 41(2):549-559. PubMed ID: 29744809 [TBL] [Abstract][Full Text] [Related]
23. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control. He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132 [TBL] [Abstract][Full Text] [Related]
24. Myoelectric pattern identification of stroke survivors using multivariate empirical mode decomposition. Zhang X; Zhou P J Healthc Eng; 2014; 5(3):261-73. PubMed ID: 25193367 [TBL] [Abstract][Full Text] [Related]
25. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511 [TBL] [Abstract][Full Text] [Related]
26. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
27. Selecting the optimal movement subset with different pattern recognition based EMG control algorithms. Al-Timemy AH; Khushaba RN; Escudero J Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():315-318. PubMed ID: 28268340 [TBL] [Abstract][Full Text] [Related]
28. A novel channel selection method for multiple motion classification using high-density electromyography. Geng Y; Zhang X; Zhang YT; Li G Biomed Eng Online; 2014 Jul; 13():102. PubMed ID: 25060509 [TBL] [Abstract][Full Text] [Related]
29. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses. Young AJ; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111 [TBL] [Abstract][Full Text] [Related]
30. Selective classification for improved robustness of myoelectric control under nonideal conditions. Scheme EJ; Englehart KB; Hudgins BS IEEE Trans Biomed Eng; 2011 Jun; 58(6):1698-705. PubMed ID: 21317073 [TBL] [Abstract][Full Text] [Related]
31. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses. Powar OS; Chemmangat K J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113 [TBL] [Abstract][Full Text] [Related]
32. Extracting time-frequency feature of single-channel vastus medialis EMG signals for knee exercise pattern recognition. Zhang Y; Li P; Zhu X; Su SW; Guo Q; Xu P; Yao D PLoS One; 2017; 12(7):e0180526. PubMed ID: 28692691 [TBL] [Abstract][Full Text] [Related]
33. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury. Liu J; Li X; Li G; Zhou P Med Eng Phys; 2014 Jul; 36(7):975-80. PubMed ID: 24844608 [TBL] [Abstract][Full Text] [Related]
34. EMG and ENG-envelope pattern recognition for prosthetic hand control. Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
36. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity. Campbell E; Phinyomark A; Scheme E Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183215 [TBL] [Abstract][Full Text] [Related]
37. Extraction of neural control commands using myoelectric pattern recognition: a novel application in adults with cerebral palsy. Liu J; Li X; Marciniak C; Rymer WZ; Zhou P Int J Neural Syst; 2014 Nov; 24(7):1450022. PubMed ID: 25245096 [TBL] [Abstract][Full Text] [Related]
38. A mechatronics platform to study prosthetic hand control using EMG signals. Geethanjali P Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475 [TBL] [Abstract][Full Text] [Related]
39. Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control. Khushaba RN; Al-Timemy A; Al-Ani A; Al-Jumaily A Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1696-1699. PubMed ID: 28268654 [TBL] [Abstract][Full Text] [Related]
40. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions. Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]